How Deep Argo Will Improve the Deep Ocean in an Ocean Reanalysis

被引:24
作者
Gasparin, Florent [1 ]
Hamon, Mathieu [1 ]
Remy, Elisabeth [1 ]
Le Traon, Pierre-Yves [1 ,2 ]
机构
[1] Mercator Ocean Int, Ramonville St Agne, France
[2] IFREMER, Plouzane, France
关键词
Ocean; Thermocline circulation; Bottom currents; bottom water; In situ oceanic observations; Reanalysis data; Oceanic variability; SEA-LEVEL RISE; DATA ASSIMILATION; OVERTURNING CIRCULATION; GLOBAL HEAT; PACIFIC; VARIABILITY; ABYSSAL; SYSTEM; OSSE;
D O I
10.1175/JCLI-D-19-0208.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Global ocean sampling with autonomous floats going to 4000-6000 m, known as the deep Argo array, constitutes one of the next challenges for tracking climate change. The question here is how such a global deep array will impact ocean reanalyses. Based on the different behavior of four ocean reanalyses, we first identified that large uncertainty exists in current reanalyses in representing local heat and freshwater fluxes in the deep ocean (1 W m(-2) and 10 cm yr(-1) regionally). Additionally, temperature and salinity comparison with deep Argo observations demonstrates that reanalysis errors in the deep ocean are of the same size as, or even stronger than, the deep ocean signal. An experimental approach, using the 1/4 degrees GLORYS2V4 (Global Ocean Reanalysis and Simulation) system, is then presented to anticipate how the evolution of the global ocean observing system (GOOS), with the advent of deep Argo, would contribute to ocean reanalyses. Based on observing system simulation experiments (OSSE), which consist in extracting observing system datasets from a realistic simulation to be subsequently assimilated in an experimental system, this study suggests that a global deep Argo array of 1200 floats will significantly constrain the deep ocean by reducing temperature and salinity errors by around 50%. Our results also show that such a deep global array will help ocean reanalyses to reduce error in temperature changes below 2000 m, equivalent to global ocean heat fluxes from 0.15 to 0.07 W m(-2), and from 0.26 to 0.19 W m(-2) for the entire water column. This work exploits the capabilities of operational systems to provide comprehensive information for the evolution of the GOOS.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 47 条
[1]  
Argo Science Team, 1998, 21 ARG SCI TEAM INT
[2]   The Ocean Reanalyses Intercomparison Project (ORA-IP) [J].
Balmaseda, M. A. ;
Hernandez, F. ;
Storto, A. ;
Palmer, M. D. ;
Alves, O. ;
Shi, L. ;
Smith, G. C. ;
Toyoda, T. ;
Valdivieso, M. ;
Barnier, B. ;
Behringer, D. ;
Boyer, T. ;
Chang, Y-S. ;
Chepurin, G. A. ;
Ferry, N. ;
Forget, G. ;
Fujii, Y. ;
Good, S. ;
Guinehut, S. ;
Haines, K. ;
Ishikawa, Y. ;
Keeley, S. ;
Koehl, A. ;
Lee, T. ;
Martin, M. J. ;
Masina, S. ;
Masuda, S. ;
Meyssignac, B. ;
Mogensen, K. ;
Parent, L. ;
Peterson, K. A. ;
Tang, Y. M. ;
Yin, Y. ;
Vernieres, G. ;
Wang, X. ;
Waters, J. ;
Wedd, R. ;
Wang, O. ;
Xue, Y. ;
Chevallier, M. ;
Lemieux, J-F. ;
Dupont, F. ;
Kuragano, T. ;
Kamachi, M. ;
Awaji, T. ;
Caltabiano, A. ;
Wilmer-Becker, K. ;
Gaillard, F. .
JOURNAL OF OPERATIONAL OCEANOGRAPHY, 2015, 8 :S80-S97
[3]   Distinctive climate signals in reanalysis of global ocean heat content [J].
Balmaseda, Magdalena A. ;
Trenberth, Kevin E. ;
Kaellen, Erland .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (09) :1754-1759
[4]   The SEEK filter method for data assimilation in oceanography: a synthesis [J].
Brasseur, Pierre ;
Verron, Jacques .
OCEAN DYNAMICS, 2006, 56 (5-6) :650-661
[5]   The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements [J].
Cabanes, C. ;
Grouazel, A. ;
von Schuckmann, K. ;
Hamon, M. ;
Turpin, V. ;
Coatanoan, C. ;
Paris, F. ;
Guinehut, S. ;
Boone, C. ;
Ferry, N. ;
Montegut, C. de Boyer ;
Carval, T. ;
Reverdin, G. ;
Pouliquen, S. ;
Le Traon, P. -Y. .
OCEAN SCIENCE, 2013, 9 (01) :1-18
[6]   An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System [J].
Chang, You-Soon ;
Zhang, Shaoqing ;
Rosati, Anthony ;
Vecchi, Gabriel A. ;
Yang, Xiaosong .
OCEAN SCIENCE JOURNAL, 2018, 53 (02) :179-189
[7]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[8]   Global and Full-Depth Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat Hydrography [J].
Desbruyeres, Damien ;
Mcdonagh, Elaine L. ;
King, Brian A. ;
Thierry, Virginie .
JOURNAL OF CLIMATE, 2017, 30 (06) :1985-1997
[9]   Deep and abyssal ocean warming from 35years of repeat hydrography [J].
Desbruyeres, Damien G. ;
Purkey, Sarah G. ;
McDonagh, Elaine L. ;
Johnson, Gregory C. ;
King, Brian A. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (19) :10356-10365
[10]  
Ganachaud A, 2003, J CLIMATE, V16, P696, DOI 10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO