Mechanisms of Auger recombination in semiconducting quantum dots

被引:17
|
作者
Zegrya, G. G. [1 ]
Samosvat, D. M. [1 ]
机构
[1] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1063776107060131
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Microscopic calculation of the probability of Auger recombination of charge carriers localized in a semiconducting quantum dot (QD) is carried out. It is shown that two mechanism of Auger recombination (nonthreshold and quasi-threshold) operate in the QD. The nonthreshold Auger recombination mechanism is associated with scattering of a quasimomentum from a heterobarrier, while the quasi-threshold mechanism is connected with spatial confinement of the wave functions of charge carriers to the QD region; scattering of carriers occurs at the short-range Coulomb potential. Both mechanisms lead to a substantial enhancement of Auger recombination at the QD as compared to a homogeneous semiconductor. A detailed analysis of the dependence of Auger recombination coefficient on the temperature and QD parameters is carried out. It is shown that the nonthreshold Auger recombination process dominates at low temperatures, while the quasi-threshold mechanism prevails at high temperatures. The dependence of the Auger recombination coefficient on the QD radius experiences noticeable changes as compared to quantum wells and quantum filaments.
引用
收藏
页码:951 / 965
页数:15
相关论文
共 50 条
  • [1] Mechanisms of Auger recombination in semiconducting quantum dots
    G. G. Zegrya
    D. M. Samosvat
    Journal of Experimental and Theoretical Physics, 2007, 104 : 951 - 965
  • [2] Mechanisms of Auger recombination in quantum wells
    G. G. Zegrya
    A. S. Polkovnikov
    Journal of Experimental and Theoretical Physics, 1998, 86 : 815 - 832
  • [3] Mechanisms of Auger recombination in quantum wells
    Zegrya, GG
    Polkovnikov, AS
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 86 (04) : 815 - 832
  • [4] Auger recombination in In(Ga)Sb/InAs quantum dots
    Zabel, T.
    Hedlund, C. Reuterskiold
    Gustafsson, O.
    Karim, A.
    Berggren, J.
    Wang, Q.
    Ernerheim-Jokumsen, C.
    Soldemo, M.
    Weissenrieder, J.
    Gotelid, M.
    Hammar, M.
    APPLIED PHYSICS LETTERS, 2015, 106 (01)
  • [5] Biexciton Auger Recombination in Colloidal Graphene Quantum Dots
    Sun, Cheng
    Figge, Florian
    McGuire, John A.
    Li, Qiqi
    Li, Liang-shi
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)
  • [6] Impact Ionization and Auger Recombination Rates in Semiconductor Quantum Dots
    Fu, Y.
    Zhou, Y. -H.
    Su, Haibin
    Boey, F. Y. C.
    Agren, H.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (09): : 3743 - 3747
  • [7] Quantum shells versus quantum dots: suppressing Auger recombination in colloidal semiconductors
    Beavon, Jacob
    Huang, Jiamin
    Harankahage, Dulanjan
    Montemurri, Michael
    Cassidy, James
    Zamkov, Mikhail
    CHEMICAL COMMUNICATIONS, 2023, 59 (76) : 11337 - 11348
  • [8] Hot excitons cooling and multiexcitons Auger recombination in PbS quantum dots
    Qin, Chaochao
    Guo, Jiajia
    Zhou, Zhongpo
    Liu, Yufang
    Jiang, Yuhai
    NANOTECHNOLOGY, 2021, 32 (18)
  • [9] Auger Recombination of Biexcitons and Negative and Positive Trions in Individual Quantum Dots
    Park, Young-Shin
    Bae, Wan Ki
    Pietryga, Jeffrey M.
    Klimov, Victor I.
    ACS NANO, 2014, 8 (07) : 7288 - 7296
  • [10] Engineering Auger recombination in colloidal quantum dots via dielectric screening
    Hou, Xiaoqi
    Kang, Jun
    Qin, Haiyan
    Chen, Xuewen
    Ma, Junliang
    Zhou, Jianhai
    Chen, Liping
    Wang, Linjun
    Wang, Lin-Wang
    Peng, Xiaogang
    NATURE COMMUNICATIONS, 2019, 10 (1)