Gravitational Magnus effect

被引:8
作者
Costa, L. Filipe O. [1 ]
Franco, Rita [2 ]
Cardoso, Vitor [2 ,3 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Matemat, GAMGSD, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Dept Fis, CENTRA, Ave Rovisco Pais 1, P-1049 Lisbon, Portugal
[3] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
基金
欧盟地平线“2020”;
关键词
POTENTIAL-DENSITY PAIRS; RELATIVISTIC DISKS; BLACK-HOLES; SPINNING SPHERE; FREE MOTION; FORCE; RINGS; INTEGRABILITY; PRECESSION; MOMENTUM;
D O I
10.1103/PhysRevD.98.024026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is well known that a spinning body moving in a fluid suffers a force orthogonal to its velocity and rotation axis-it is called the Magnus effect. Recent simulations of spinning black holes and (indirect) theoretical predictions, suggest that a somewhat analogous effect may occur for purely gravitational phenomena. The magnitude and precise direction of this "gravitational Magnus effect" is still the subject of debate. Starting from the rigorous equations of motion for spinning bodies in general relativity (Mathisson-Papapetrou equations), we show that indeed such an effect takes place and is a fundamental part of the spin-curvature force. The effect arises whenever there is a current of mass/energy, non-parallel to a body's spin. We compute the effect explicitly for some astrophysical systems of interest: a galactic dark matter halo, a black hole accretion disk, and the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. It is seen to lead to secular orbital precessions potentially observable by future astrometric experiments and gravitational-wave detectors. Finally, we consider also the reciprocal problem: the "force" exerted by the body on the surrounding matter, and show that (from this perspective) the effect is due to the body's gravitomagnetic field. We compute it rigorously, showing the matching with its reciprocal, and clarifying common misconceptions in the literature regarding the action-reaction law in post-Newtonian gravity.
引用
收藏
页数:30
相关论文
共 97 条
[1]  
[Anonymous], 1973, LARGE SCALE STRUCTUR
[2]  
[Anonymous], THEORY EXPT GRAVITAT
[3]  
[Anonymous], 1995, PRINCETON SERIES PHY
[4]  
[Anonymous], 2012, Classical electrodynamics
[5]  
[Anonymous], 2008, INTRO ELECTRODYNAMIC
[6]  
[Anonymous], ARXIV170200786
[7]   SPIN-INDUCED ORBITAL PRECESSION AND ITS MODULATION OF THE GRAVITATIONAL WAVE-FORMS FROM MERGING BINARIES [J].
APOSTOLATOS, TA ;
CUTLER, C ;
SUSSMAN, GJ ;
THORNE, KS .
PHYSICAL REVIEW D, 1994, 49 (12) :6274-6297
[8]   THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND [J].
Arzoumanian, Z. ;
Brazier, A. ;
Burke-Spolaor, S. ;
Chamberlin, S. J. ;
Chatterjee, S. ;
Christy, B. ;
Cordes, J. M. ;
Cornish, N. J. ;
Crowter, K. ;
Demorest, P. B. ;
Deng, X. ;
Dolch, T. ;
Ellis, J. A. ;
Ferdman, R. D. ;
Fonseca, E. ;
Garver-Daniels, N. ;
Gonzalez, M. E. ;
Jenet, F. ;
Jones, G. ;
Jones, M. L. ;
Kaspi, V. M. ;
Koop, M. ;
Lam, M. T. ;
Lazio, T. J. W. ;
Levin, L. ;
Lommen, A. N. ;
Lorimer, D. R. ;
Luo, J. ;
Lynch, R. S. ;
Madison, D. R. ;
McLaughlin, M. A. ;
McWilliams, S. T. ;
Mingarelli, C. M. F. ;
Nice, D. J. ;
Palliyaguru, N. ;
Pennucci, T. T. ;
Ransom, S. M. ;
Sampson, L. ;
Sanidas, S. A. ;
Sesana, A. ;
Siemens, X. ;
Simon, J. ;
Stairs, I. H. ;
Stinebring, D. R. ;
Stovall, K. ;
Swiggum, J. ;
Taylor, S. R. ;
Vallisneri, M. ;
van Haasteren, R. ;
Wang, Y. .
ASTROPHYSICAL JOURNAL, 2016, 821 (01)
[9]   Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity [J].
Babak, Stanislav ;
Taracchini, Andrea ;
Buonanno, Alessandra .
PHYSICAL REVIEW D, 2017, 95 (02)
[10]   Exact potential-density pairs for flattened dark haloes [J].
Baes, Maarten .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 392 (04) :1503-1508