In Vivo Ribbon Mobility and Turnover of Ribeye at Zebrafish Hair Cell Synapses

被引:13
作者
Graydon, Cole W. [1 ]
Manor, Uri [2 ,4 ]
Kindt, Katie S. [3 ]
机构
[1] NINDS, Synapt Physiol Sect, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[2] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Sect Organelle Biol, NIH, Bethesda, MD 20892 USA
[3] Natl Inst Deafness & Other Commun Disorders, Sect Sensory Cell Dev & Funct, NIH, Bethesda, MD USA
[4] Salk Inst Biol Studies, Waitt Adv Biophoton Ctr, La Jolla, CA 92037 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
SYNAPTIC RIBBONS; ACTIVE ZONES; EXOCYTOSIS; VESICLES; RELEASE; PHOTORECEPTORS; DIFFUSION; DENSITY; NUMBER; SITES;
D O I
10.1038/s41598-017-07940-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ribbons are presynaptic structures that mediate synaptic vesicle release in some sensory cells of the auditory and visual systems. Although composed predominately of the protein Ribeye, very little is known about the structural dynamics of ribbons. Here we describe the in vivo mobility and turnover of Ribeye at hair cell ribbon synapses by monitoring fluorescence recovery after photobleaching (FRAP) in transgenic zebrafish with GFP-tagged Ribeye. We show that Ribeye can exchange between halves of a ribbon within similar to 1 minute in a manner that is consistent with a simple diffusion mechanism. In contrast, exchange of Ribeye between other ribbons via the cell's cytoplasm takes several hours.
引用
收藏
页数:8
相关论文
共 50 条
[1]  
Adly MA, 1999, INVEST OPHTH VIS SCI, V40, P2165
[2]   Detailed Simulations of Cell Biology with Smoldyn 2.1 [J].
Andrews, Steven S. ;
Addy, Nathan J. ;
Brent, Roger ;
Arkin, Adam P. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (03)
[3]   Properties of Ribbon and Non-Ribbon Release from Rod Photoreceptors Revealed by Visualizing Individual Synaptic Vesicles [J].
Chen, Minghui ;
Van Hook, Matthew J. ;
Zenisek, David ;
Thoreson, Wallace B. .
JOURNAL OF NEUROSCIENCE, 2013, 33 (05) :2071-2086
[4]   Molecular dissection of the photoreceptor ribbon synapse:: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex [J].
Dieck, ST ;
Altrock, WD ;
Kessels, MM ;
Qualmann, B ;
Regus, H ;
Brauner, D ;
Fejtová, A ;
Bracko, O ;
Gundelfinger, ED ;
Brandstätter, JH .
JOURNAL OF CELL BIOLOGY, 2005, 168 (05) :825-836
[5]   Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply [J].
Graydon, Cole W. ;
Zhang, Jun ;
Oesch, Nicholas W. ;
Sousa, Alioscka A. ;
Leapman, Richard D. ;
Diamond, Jeffrey S. .
JOURNAL OF NEUROSCIENCE, 2014, 34 (27) :8948-8962
[6]   Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse [J].
Griesinger, CB ;
Richards, CD ;
Ashmore, JF .
NATURE, 2005, 435 (7039) :212-215
[7]   OPINION Proteostasis in complex dendrites [J].
Hanus, Cyril ;
Schuman, Erin M. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (09) :638-648
[8]   Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse [J].
Heidelberger, R .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 111 (02) :225-241
[9]   SYNAPTIC RIBBONS, SPHERES AND INTERMEDIATE STRUCTURES IN THE DEVELOPING RAT RETINA [J].
HERMES, B ;
REUSS, S ;
VOLLRATH, L .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 1992, 10 (03) :215-223
[10]   High mobility of vesicles supports continuous exocytosis at a ribbon synapse [J].
Holt, M ;
Cooke, A ;
Neef, A ;
Lagnado, L .
CURRENT BIOLOGY, 2004, 14 (03) :173-183