Characterization of Resident Space object States Using Functional Data Analysis

被引:2
|
作者
Kelecy, Thomas [1 ]
Gerber, Emily [1 ]
Akram, Sufyaan [2 ]
Paffett, John [2 ]
机构
[1] Stratagem Grp, Colorado Springs, CO 80920 USA
[2] Appl Space Solut Ltd, Southampton, Hants, England
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2022年 / 69卷 / 02期
关键词
Satellite State characterization; Probabilistic analysis; Information theory; Classification;
D O I
10.1007/s40295-022-00323-1
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
To date, most characterization techniques (e.g., using photometric light curves) take place using time and frequency domain analyses of data samples generally lacking in the complete information content needed for unambiguous characterization of non-resolved Resident Space Objects (RSOs). In this paper, the information content of multiple measurement types is examined using information theoretic and functional data analysis (FDA) approaches which have shown promise in characterizing the physical and dynamic attributes of space objects from non-resolved observations. With limited data and information, it may still be valuable to understand whether the "state" of an RSO is: (a) active (operational), (b) passive (debris), (c) dormant (a potential threat acting passive), or (4) transitionary between any of 2 of the a-c states. Representative use cases are established, and the information content is examined in a probabilistic context for a set of simulated astrometric, photometric, Long Wave Infra-red (LWIR) and Radio Frequency (RF) observations for a diverse set of object shapes, sizes and dynamics representative of states a-d are used to demonstrate the application and value of FDA. The results confirm the value of these approaches by correctly categorizing independent sets of measurements and quantifying the likelihood of a given combination of observation types as being associated with a specific object. The value and information contribution of each observation type to the characterization is assessed by virtue of the Hellinger Distance metric.
引用
收藏
页码:627 / 649
页数:23
相关论文
共 50 条
  • [31] Functional data analysis to describe and classify southern resident killer whale calls
    Duc, Paul Nguyen Hong
    Campbell, David A.
    Dowd, Michael
    Joy, Ruth
    ECOLOGICAL INFORMATICS, 2024, 83
  • [32] SPACE OBJECT CLASSIFICATION USING MODEL DRIVEN AND DATA DRIVEN METHODS
    Linares, Richard
    Crassidis, John L.
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 4213 - 4231
  • [33] Representing and querying space object registration data using graph databases
    Le May, S.
    Carter, B. A.
    Gehly, S.
    Flegel, S.
    Jah, M.
    ACTA ASTRONAUTICA, 2020, 173 : 392 - 403
  • [34] Space Object Data Association Using Spatial Pattern Recognition Approaches
    Aniketh Kalur
    Steven A. Szklany
    John L. Crassidis
    The Journal of the Astronautical Sciences, 2020, 67 : 1708 - 1734
  • [35] Classification of cognitive states using functional MRI data
    Yang, Ye
    Pal, Ranadip
    O'Boyle, Michael
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [36] Space Object Data Association Using Spatial Pattern Recognition Approaches
    Kalur, Aniketh
    Szklany, Steven A.
    Crassidis, John L.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2020, 67 (04): : 1708 - 1734
  • [37] Representing and querying space object registration data using graph databases
    Le May, S.
    Carter, B.A.
    Gehly, S.
    Flegel, S.
    Jah, M.
    Acta Astronautica, 2020, 173 : 392 - 403
  • [38] Gaussian-Binary classification for resident space object maneuver detection
    Wang, Yiran
    Bai, Xiaoli
    Peng, Hao
    Chen, Genshe
    Shen, Dan
    Blasch, Erik
    Sheaff, Carolyn B.
    Acta Astronautica, 2021, 187 : 438 - 446
  • [39] Gaussian-Binary classification for resident space object maneuver detection
    Wang, Yiran
    Bai, Xiaoli
    Peng, Hao
    Chen, Genshe
    Shen, Dan
    Blasch, Erik
    Sheaff, Carolyn B.
    ACTA ASTRONAUTICA, 2021, 187 : 438 - 446
  • [40] Progress of light curve inversion technology for resident space object characteristics
    Wang Y.
    Du X.
    Fan C.
    Kexue Tongbao/Chinese Science Bulletin, 2017, 62 (15): : 1578 - 1590