Research Update: Materials design of implantable nanogenerators for biomechanical energy harvesting

被引:74
作者
Li, Jun [1 ]
Wang, Xudong [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
IN-VIVO; 0.5BA(ZR0.2TI0.8)O-3-0.5(BA0.7CA0.3)TIO3 NANOWIRES; TRIBOELECTRIC NANOGENERATORS; MECHANICAL ENERGY; DRIVEN; BIOCOMPATIBILITY; PVDF; PACEMAKER; DEVICES; SYSTEM;
D O I
10.1063/1.4978936
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Implantable nanogenerators are rapidly advanced recently as a promising concept for harvesting biomechanical energy in vivo. This review article presents an overview of the most current progress of implantable piezoelectric nanogenerator (PENG) and triboelectric nanogenerator (TENG) with a focus on materials selection, engineering, and assembly. The evolution of the PENG materials is discussed from ZnO nanostructures, to high-performance ferroelectric perovskites, to flexible piezoelectric polymer mesostructures. Discussion of TENGs is focused on the materials and surface features of friction layers, encapsulation materials, and device integrations. Challenges faced by this promising technology and possible future research directions are also discussed. (C) 2017 Author(s).
引用
收藏
页数:16
相关论文
共 62 条
[1]   Implantable Devices: Issues and Challenges [J].
Bazaka, Kateryna ;
Jacob, Mohan V. .
ELECTRONICS, 2013, 2 (01) :1-34
[2]   Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane:: A review [J].
Bélanger, MC ;
Marois, Y .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2001, 58 (05) :467-477
[3]   Piezoelectric and ferroelectric materials and structures for energy harvesting applications [J].
Bowen, C. R. ;
Kim, H. A. ;
Weaver, P. M. ;
Dunn, S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :25-44
[4]   Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters [J].
Briscoe, Joe ;
Dunn, Steve .
NANO ENERGY, 2015, 14 :15-29
[5]   Porous PVDF As Effective Sonic Wave Driven Nanogenerators [J].
Cha, SeungNam ;
Kim, Seong Min ;
Kim, HyunJin ;
Ku, JiYeon ;
Sohn, Jung Inn ;
Park, Young Jun ;
Song, Byong Gwon ;
Jung, Myoung Hoon ;
Lee, Eun Kyung ;
Choi, Byoung Lyong ;
Park, Jong Jin ;
Wang, Zhong Lin ;
Kim, Jong Min ;
Kim, Kinam .
NANO LETTERS, 2011, 11 (12) :5142-5147
[6]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[7]   Cell and protein compatibility of parylene-C surfaces [J].
Chang, Tracy Y. ;
Yadav, Vikramaditya G. ;
De Leo, Sarah ;
Mohedas, Agustin ;
Rajalingam, Birnal ;
Chen, Chia-Ling ;
Selvarasah, Selvapraba ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
LANGMUIR, 2007, 23 (23) :11718-11725
[8]   1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J].
Chen, Xi ;
Xu, Shiyou ;
Yao, Nan ;
Shi, Yong .
NANO LETTERS, 2010, 10 (06) :2133-2137
[9]   Wireless, power-free and implantable nanosystem for resistance-based biodetection [J].
Cheng, Li ;
Yuan, Miaomiao ;
Gu, Long ;
Wang, Zhe ;
Qin, Yong ;
Jing, Tao ;
Wang, Zhong Lin .
NANO ENERGY, 2015, 15 :598-606
[10]   Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies [J].
Cheng, Xiaoliang ;
Xue, Xiang ;
Ma, Ye ;
Han, Mengdi ;
Zhang, Wei ;
Xu, Zhiyun ;
Zhang, Hao ;
Zhang, Haixia .
NANO ENERGY, 2016, 22 :453-460