Optimal strategies for the control of autonomous vehicles in data assimilation

被引:4
作者
McDougall, D. [1 ]
Moore, R. O. [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, 201 E 24th St,Stop C0200, Austin, TX 78712 USA
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
关键词
Bayesian inverse problem; Lagrangian data assimilation; Optimal control; Ocean glider; ENSEMBLE KALMAN FILTER; CARLO SAMPLING METHODS; METEOROLOGICAL OBSERVATIONS; INVERSE PROBLEMS; ALGORITHMS; EQUATIONS; 4D-VAR; CHAINS; FIELD;
D O I
10.1016/j.physd.2017.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a method to compute optimal control paths for autonomous vehicles deployed for the purpose of inferring a velocity field. In addition to being advected by the flow, the vehicles are able to effect a fixed relative speed with arbitrary control over direction. It is this direction that is used as the basis for the locally optimal control algorithm presented here, with objective formed from the variance trace of the expected posterior distribution. We present results for linear flows near hyperbolic fixed points. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 67 条
[51]   ANALYSIS-METHODS FOR NUMERICAL WEATHER PREDICTION [J].
LORENC, AC .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1986, 112 (474) :1177-1194
[52]  
Mariano AJ, 2002, J ATMOS OCEAN TECH, V19, P1114, DOI 10.1175/1520-0426(2002)019<1114:LAAPOC>2.0.CO
[53]  
2
[54]  
McDougall D., 2012, THESIS
[55]  
McDougall D., SPRINGER INDAM SERIE
[56]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[57]   MONTE-CARLO SAMPLING OF SOLUTIONS TO INVERSE PROBLEMS [J].
MOSEGAARD, K ;
TARANTOLA, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B7) :12431-12447
[58]   Optimal estimation of Eulerian velocity field given Lagrangian observations [J].
Piterbarg, Leonid I. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (10) :2133-2148
[59]   WEAK CONVERGENCE AND OPTIMAL SCALING OF RANDOM WALK METROPOLIS ALGORITHMS [J].
Roberts, G. O. ;
Gelman, A. ;
Gilks, W. R. .
ANNALS OF APPLIED PROBABILITY, 1997, 7 (01) :110-120
[60]   Optimal scaling of discrete approximations to Langevin diffusions [J].
Roberts, GO ;
Rosenthal, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :255-268