Determinants for Stiffness Adjustment Mechanisms

被引:19
作者
Jafari, Amir [1 ,2 ]
Hung Quy Vu [3 ]
Iida, Fumiya [4 ,5 ]
机构
[1] Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX USA
[2] Singapore Inst Mfg Technol SIMTech, Mechatron Grp, Singapore, Singapore
[3] Univ Zurich, Dept Informat, Artificial Intelligence Lab, Zurich, Switzerland
[4] Univ Cambridge, Dept Engn, Bioinspired Robot Lab, Trumpington St, Cambridge CB2 1PZ, England
[5] Swiss Fed Inst Technol, Inst Robot & Intelligent Syst, Bioinspired Robot Lab, Trumpington St, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Variable stiffness actuators; Stiffness adjustment mechanisms; Determinants; Optimal design; Mechanism theory; ENERGY-CONSUMPTION; ACTUATOR; DESIGN; ROBOT; SAFE; IMPEDANCE;
D O I
10.1007/s10846-015-0253-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variable stiffness actuators (VSAs) are a new generation of robotic drives that are developed to enhance the robot's ability to safely interact with unknown and dynamic environments. Furthermore, stiffness adjsutability can enhance energy efficiency in some particular applications, e.g. periodic motions with different frequencies. To adjust the stiffness, different mechanisms have been implemented in VSAs, each to fulfill the requirements of different applications with certain determinants. This paper explains these determinants and presents a comprehensive framework to systematically analyse performances of different stiffness adjustment mechanisms. First, a classification of different stiffness adjustment mechanisms is presented. Then, characteristics of each class regarding different determinants are evaluated and compared through numerical analysis. This will give additional insights into intrinsic pros and cons of different classes of stiffness adjustment mechanisms that enable a systematic future development of variable stiffness actuators and their applications.
引用
收藏
页码:435 / 454
页数:20
相关论文
共 72 条
[1]  
Alaimo SM., 2011, IFAC P VOLUMES, V44, P6472
[2]   The DLR lightweight robot:: design and control concepts for robots in human environments [J].
Albu-Schaeffer, A. ;
Haddadin, S. ;
Ott, Ch. ;
Stemmer, A. ;
Wimboeck, T. ;
Hirzinger, G. .
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2007, 34 (05) :376-385
[3]  
Albu-Schaffer A., 2005, P 4 IARP IEEE RAS EU
[4]   A variable stiffness transverse mode shape memory alloy actuator as a minimally invasive organ positioner [J].
Anderson, W. ;
Eshghinejad, A. ;
Azadegan, R. ;
Cooper, C. ;
Elahinia, M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (07) :1503-1518
[5]  
Berselli G., 2012, 2012 ASME C SMART MA, P19
[6]  
Beyl P, 2009, IFMBE PROC, V22, P1825
[7]   Fast and "soft-arm" tactics [J].
Bicchi, A ;
Tonietti, G .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2004, 11 (02) :22-33
[8]  
Bureau M, 2011, INT C REHAB ROBOT
[9]   Variable Stiffness Actuators: A Port-Based Power-Flow Analysis [J].
Carloni, Raffaella ;
Visser, Ludo C. ;
Stramigioli, Stefano .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (01) :1-11
[10]  
Carpi F., 2008, FUNDAMENTALS MAT DEV