Multi-objective optimization of a novel biomass-based multigeneration system consisting of liquid natural gas open cycle and proton exchange membrane electrolyzer

被引:16
|
作者
Taheri, Muhammad Hadi [1 ]
Khani, Leyla [2 ]
Mohammadpourfard, Mousa [2 ]
Aminfar, Habib [1 ]
机构
[1] Univ Tabriz, Fac Mech Engn, Tabriz, Iran
[2] Univ Tabriz, Fac Chem & Petr Engn, Tabriz, Iran
关键词
biomass; exergoeconomics; LNG regasification; multigeneration; multi-objective optimization; PEM; UNDERGROUND COAL-GASIFICATION; THERMODYNAMIC ANALYSIS; HYDROGEN-PRODUCTION; EXERGY ANALYSES; ENERGY SYSTEM; THERMOECONOMIC ANALYSIS; ENVIRONMENTAL-ANALYSES; POLYGENERATION SYSTEM; SOLAR; DESIGN;
D O I
10.1002/er.6931
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the present study, multi-objective optimization has been conducted to optimize a novel multigeneration system that is based on biomass energy, and uses the cold energy of the liquid natural gas as a heat sink. The designed system is an integration of combined gas-steam cycle, a cascade Rankine cycles, a lithium bromide-water absorption refrigeration cycle, a proton exchange membrane electrolyzer, and a liquid natural gas subsystem. The proposed system aims to produce power, cooling, natural gas, and hydrogen. Following thermodynamic and exergoeconomic analysis, two conflicting objectives, that is, total product cost rate and exergy efficiency, are selected for the optimization process. The genetic algorithm is used to optimize the system and the Pareto front plot is achieved. The obtained results for this system reveal that the final optimization point has an exergy efficiency of 39.023% and a total product cost rate of 1107$/h. This point is a trade-off between thermodynamic and thermoeconomic single-objective optimization cases. In addition, the biomass gasification-gas turbine cycle, organic Rankine cycles, and proton exchange membrane have the highest exergy destruction rates, respectively. Finally, it is shown that the liquid pressure ratio of the natural gas pump and inlet temperature of the steam turbine have the most important effects on the balance between the selected objective parameters.
引用
收藏
页码:16806 / 16823
页数:18
相关论文
共 50 条
  • [31] Techno-economic assessment and multi-objective optimization of a hybrid methanol-reforming proton exchange membrane fuel cell system with cascading energy utilization
    Cheng, Kun
    Wang, Jinshuai
    Shao, Yunlin
    Fu, Lianyan
    Wu, Zhengxiang
    Zhang, Yuxin
    Yang, Jiahao
    Wu, Kaiyao
    Zhang, Yang
    Chen, Weidong
    Huang, Xin
    Ma, Chuan
    Ran, Jingyu
    ENERGY, 2024, 313
  • [32] Multi-objective optimization of two-phase flow in the proton exchange membrane fuel cells based on a data driven surrogate model
    Ghasabehi, Mehrdad
    Farokhi, Emad
    Shams, Mehrzad
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 130 : 324 - 345
  • [33] Comprehensive performance assessment and multi-objective optimization of high-power proton exchange membrane fuel cell system under variable load
    Xu, Kui
    Fan, Liyun
    Sun, Jinwei
    Chen, Aoxue
    Xu, Chao
    FUEL, 2024, 363
  • [34] A novel hybrid biomass-solar driven triple combined power cycle integrated with hydrogen production: Multi-objective optimization based on power cost and CO2 emission
    Cao, Yan
    Dhahad, Hayder A.
    Togun, Hussein
    Anqi, Ali E.
    Farouk, Naeim
    Farhang, Babak
    ENERGY CONVERSION AND MANAGEMENT, 2021, 234
  • [35] Multi-objective optimization of biomass gasification based combined heat and power system employing molten carbonate fuel cell and externally fired gas turbine
    Roy, Dibyendu
    APPLIED ENERGY, 2023, 348
  • [36] Multi-objective optimization of thermodynamics parameters of a biomass and liquefied natural gas complementary system integrated with liquid air energy storage and two-stage organic Rankine cycles
    Duan, Zheng
    Wang, Kangxing
    Cao, Yihuai
    Wang, Jiangjiang
    Liu, Qibin
    ENERGY, 2025, 314
  • [37] 4E analysis and multi-objective optimization of a novel multi-generating cycle based on waste heat recovery from solid oxide fuel cell fed by biomass
    Mishamandani, Arian Shabruhi
    Nejad, Amir Qatarani
    Shabani, Najmeh
    Ahmadi, Gholamreza
    RENEWABLE ENERGY FOCUS, 2024, 50
  • [38] Multi-objective optimization of a combined cooling, heating and power system integrated with reformed methanol high-temperature proton exchange membrane fuel cell
    Zhong, Zhaoda
    Gao, Xin
    Zhu, Jimin
    Zhao, Wenyu
    Li, Na
    Araya, Samuel Simon
    Liso, Vincenzo
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 3674 - 3691
  • [39] Techno-economic investigation and multi-criteria optimization of a novel combined cycle based on biomass gasifier, S-CO2 cycle, and liquefied natural gas for cold exergy usage
    Cao, Yan
    Dhahad, Hayder A.
    Hussen, Hasanen M.
    Attia, El-Awady
    Rashidi, Shima
    Shamseldin, Mohamed A.
    Almojil, Sattam Fahad
    Almohana, Abdulaziz Ibrahim
    Alali, Abdulrhman Fahmi
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [40] Thermodynamic, economic, and environmental analyses and multi-objective optimization of a CCHP system based on solid oxide fuel cell and gas turbine hybrid power cycle
    Huang, Zihao
    You, Huailiang
    Chen, Daifen
    Hu, Bin
    Liu, Cunbo
    Xiao, Yan
    Prokazov, Aleksandr
    Lysyakov, Anatoly
    FUEL, 2024, 368