Multi-objective optimization of a novel biomass-based multigeneration system consisting of liquid natural gas open cycle and proton exchange membrane electrolyzer

被引:16
|
作者
Taheri, Muhammad Hadi [1 ]
Khani, Leyla [2 ]
Mohammadpourfard, Mousa [2 ]
Aminfar, Habib [1 ]
机构
[1] Univ Tabriz, Fac Mech Engn, Tabriz, Iran
[2] Univ Tabriz, Fac Chem & Petr Engn, Tabriz, Iran
关键词
biomass; exergoeconomics; LNG regasification; multigeneration; multi-objective optimization; PEM; UNDERGROUND COAL-GASIFICATION; THERMODYNAMIC ANALYSIS; HYDROGEN-PRODUCTION; EXERGY ANALYSES; ENERGY SYSTEM; THERMOECONOMIC ANALYSIS; ENVIRONMENTAL-ANALYSES; POLYGENERATION SYSTEM; SOLAR; DESIGN;
D O I
10.1002/er.6931
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the present study, multi-objective optimization has been conducted to optimize a novel multigeneration system that is based on biomass energy, and uses the cold energy of the liquid natural gas as a heat sink. The designed system is an integration of combined gas-steam cycle, a cascade Rankine cycles, a lithium bromide-water absorption refrigeration cycle, a proton exchange membrane electrolyzer, and a liquid natural gas subsystem. The proposed system aims to produce power, cooling, natural gas, and hydrogen. Following thermodynamic and exergoeconomic analysis, two conflicting objectives, that is, total product cost rate and exergy efficiency, are selected for the optimization process. The genetic algorithm is used to optimize the system and the Pareto front plot is achieved. The obtained results for this system reveal that the final optimization point has an exergy efficiency of 39.023% and a total product cost rate of 1107$/h. This point is a trade-off between thermodynamic and thermoeconomic single-objective optimization cases. In addition, the biomass gasification-gas turbine cycle, organic Rankine cycles, and proton exchange membrane have the highest exergy destruction rates, respectively. Finally, it is shown that the liquid pressure ratio of the natural gas pump and inlet temperature of the steam turbine have the most important effects on the balance between the selected objective parameters.
引用
收藏
页码:16806 / 16823
页数:18
相关论文
共 50 条
  • [21] Multi-objective optimization of porous layers for proton exchange membrane fuel cells based on neural network surrogate model
    Liu, Shengnan
    Chen, Cong
    Tan, Jiaqi
    Hu, Haoqin
    Xuan, Dongji
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 19796 - 19813
  • [22] Multi-objective optimization of an innovative power-cooling integrated system based on gas turbine cycle with compressor inlet air precooling, Kalina cycle and ejector refrigeration cycle
    Du, Yang
    Jiang, Nan
    Zhang, Yicen
    Wang, Xu
    Zhao, Pan
    Wang, Jiangfeng
    Dai, Yiping
    ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [23] Multi-objective optimization of a hybrid biomass-based SOFC/GT/double effect absorption chiller/RO desalination system with CO2 recycle
    Behzadi, A.
    Habibollahzade, A.
    Zare, V.
    Ashjaee, M.
    ENERGY CONVERSION AND MANAGEMENT, 2019, 181 : 302 - 318
  • [24] Novel supercritical CO2-Based Low-Carbon multigeneration System: Multi-Objective optimization for combined Power, Cooling, Heating, and desalination
    Yousef, Mohamed S.
    Santana, Domingo
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 23
  • [25] Multi-criteria performance comparison between a novel and two conventional configurations of natural gas - driven combined cycle power plant based on a hybrid multi-objective optimization
    Zoghi, Mohammad
    Habibi, Hamed
    Chitsaz, Ata
    Ayazpour, Mojtaba
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 19
  • [26] Energy analysis and multi-objective optimization of a novel exhaust air heat recovery system consisting of an air-based building integrated photovoltaic/thermal system and a thermal wheel
    Khanmohammadi, Shoaib
    Shahsavar, Amin
    ENERGY CONVERSION AND MANAGEMENT, 2018, 172 : 595 - 610
  • [27] Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies
    Ai, Tianchao
    Chen, Hongwei
    Zhong, Fanghao
    Jia, Jiandong
    Song, Yangfan
    ENERGY, 2023, 276
  • [28] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling, Heating and Power System
    Jiejie Liu
    Yao Li
    Xianyang Meng
    Jiangtao Wu
    Journal of Thermal Science, 2024, 33 : 931 - 950
  • [29] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling, Heating and Power System
    Liu, Jiejie
    Li, Yao
    Meng, Xianyang
    Wu, Jiangtao
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (03) : 931 - 950
  • [30] Thermo-economic analysis and multi-objective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for offshore gas turbine application
    Zhang, Qiang
    Ogren, Ryan M.
    Kong, Song-Charng
    ENERGY CONVERSION AND MANAGEMENT, 2018, 172 : 212 - 227