Chaotic, informational and synchronous behaviour of multiplex networks

被引:24
作者
Baptista, M. S. [1 ]
Szmoski, R. M. [2 ]
Pereira, R. F. [3 ]
de Souza Pinto, S. E. [4 ]
机构
[1] Univ Aberdeen, SUPA, Inst Complex Syst & Math Biol, Aberdeen, Scotland
[2] Univ Tecnol Fed Parana, Dept Phys, BR-84016210 Ponta Grossa, Parana, Brazil
[3] Univ Tecnol Fed Parana, Dept Math, BR-84016210 Ponta Grossa, Parana, Brazil
[4] Univ Estadual Ponta Grossa, Dept Fis, BR-84030900 Ponta Grossa, Parana, Brazil
基金
英国工程与自然科学研究理事会;
关键词
COLLECTIVE DYNAMICS; SMALL-WORLD;
D O I
10.1038/srep22617
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The understanding of the relationship between topology and behaviour in interconnected networks would allow to charac-terise and predict behaviour in many real complex networks since both are usually not simultaneously known. Most previous studies have focused on the relationship between topology and synchronisation. In this work, we provide analytical formulas that shows how topology drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex networks with constant Jacobian. We also study this relationship numerically in multiplex networks of Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec-tion between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Critical properties of the synchronization transition in space-time chaos [J].
Ahlers, V ;
Pikovsky, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :4
[2]  
[Anonymous], 1959, Publicationes Mathematicae
[3]   Do Brain Networks Evolve by Maximizing Their Information Flow Capacity? [J].
Antonopoulos, Chris G. ;
Srivastava, Shambhavi ;
Pinto, Sandro E. de S. ;
Baptista, Murilo S. .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (08)
[4]   Turing patterns in multiplex networks [J].
Asllani, Malbor ;
Busiello, Daniel M. ;
Carletti, Timoteo ;
Fanelli, Duccio ;
Planchon, Gwendoline .
PHYSICAL REVIEW E, 2014, 90 (04)
[5]  
Baptista M., 2011, ARXIV11043498V3
[6]   How complex a dynamical network can be? [J].
Baptista, M. S. ;
Kakmeni, F. Moukam ;
Del Magno, Gianluigi ;
Hussein, M. S. .
PHYSICS LETTERS A, 2011, 375 (10) :1309-1318
[7]   Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information [J].
Baptista, M. S. ;
Kakmeni, F. M. Moukam ;
Grebogi, C. .
PHYSICAL REVIEW E, 2010, 82 (03)
[8]  
Baptista M. S., 2012, PLOS ONE, V7
[9]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[10]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122