REMARKS ON MONOTONE CONTRACTIVE TYPE MAPPINGS IN WEIGHTED GRAPHS

被引:0
作者
Bin Dehaish, Buthinah A. [1 ,2 ]
Khamsi, Mohamed A. [3 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21593, Saudi Arabia
[2] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[4] King Fand Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
Asymptotic nonexpansive mapping; fixed point; monotone mapping; partially ordered; uniformly convex; PARTIALLY ORDERED SETS; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we will discuss the recent work of Gornicki in the context of weighted graphs. This extension is valuable since it relaxes any order structure defined on a metric space. This approach finds its origin in the work of Jachymski. To be more specific, we prove that continuous Ciric-Jachymski-Matkowski contraction mappings monotone in the graphical sense have a fixed point.
引用
收藏
页码:1021 / 1027
页数:7
相关论文
共 15 条
  • [1] Topological aspects of weighted graphs with application to fixed point theory
    Alfuraidan, M. R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 287 - 292
  • [2] Alfuraidan MR, 2016, FIXED POINT THEORY AND GRAPH THEORY: FOUNDATIONS AND INTEGRATIVE APPROACHES, P1
  • [3] [Anonymous], 1990, Topics in metric fixed point theory
  • [4] Carl S, 2011, FIXED POINT THEORY IN ORDERED SETS AND APPLICATIONS: FROM DIFFERENTIAL AND INTEGRAL EQUATIONS TO GAME THEORY, P1, DOI 10.1007/978-1-4419-7585-0
  • [5] Ciric L., 1981, Publ. Inst. Math. (Beograd) (N.S.), V30, P25
  • [6] GOrnicki J., 2017, FIXED POINT THEORY A
  • [7] Guo D., 1988, NONLINEAR PROBLEMS A
  • [8] Heikkila S., 1994, MONOTONE ITERATIVE T
  • [9] Jachymski J, 2008, P AM MATH SOC, V136, P1359
  • [10] Khamsi M.A., 2001, An Introduction to Metric Spaces and Fixed Point Theory