Stability of a time fractional advection-diffusion system

被引:11
作者
Arfaoui, Hassen [1 ]
Ben Makhlouf, Abdellatif [1 ]
机构
[1] Jouf Univ, Dept Math, Coll Sci, Gurayat, Saudi Arabia
关键词
Advection-diffusion system; Caputo fractional order derivative; Fourier decomposition; Mittag-Leffler function; Stability; NAVIER-STOKES SYSTEM; STABILIZABILITY; EQUATIONS; STABILIZATION; MODEL;
D O I
10.1016/j.chaos.2022.111949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a one dimensional advection-diffusion system in Caputo fractional order derivative. Using a Fourier decomposition and the Mittag-Leffler Function (MLF), we prove a new stability results for the solution of a such system. Numerical experiments were carried out at the end of this work to confirm the theoretical results obtained.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 32 条
[11]   Solution of Fractional Differential Equation Systems and Computation of Matrix Mittag-Leffler Functions [J].
Duan, Junsheng ;
Chen, Lian .
SYMMETRY-BASEL, 2018, 10 (10)
[12]   Stabilizability of Two-Dimensional Navier-Stokes Equations with Help of a Boundary Feedback Control [J].
Fursikov, A. V. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (03) :259-301
[13]   Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback [J].
Fursikov, AV .
SBORNIK MATHEMATICS, 2001, 192 (3-4) :593-639
[14]   On approximate solutions for a fractional prey-predator model involving the Atangana-Baleanu derivative [J].
Ghanbari, Behzad .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[15]   An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model [J].
Ghanbari, Behzad ;
Gunerhan, Hatira ;
Srivastava, H. M. .
CHAOS SOLITONS & FRACTALS, 2020, 138
[16]   Finite Difference Methods for Caputo-Hadamard Fractional Differential Equations [J].
Gohar, Madiha ;
Li, Changpin ;
Li, Zhiqiang .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
[17]   The role of fractional calculus in modeling biological phenomena: A review [J].
Ionescu, C. ;
Lopes, A. ;
Copot, D. ;
Machado, J. A. T. ;
Bates, J. H. T. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 51 :141-159
[18]   Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition [J].
Jafari, Hossein ;
Daftardar-Gejji, Varsha .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (02) :488-497
[19]  
Kilbas A.A., 2006, THEORY APPL FRACTION
[20]  
Matignon D., 1996, Symposium on Control, Optimization and Supervision. CESA '96 IMACS Multiconference. Computational Engineering in Systems Applications, P963