Stability of a time fractional advection-diffusion system

被引:11
作者
Arfaoui, Hassen [1 ]
Ben Makhlouf, Abdellatif [1 ]
机构
[1] Jouf Univ, Dept Math, Coll Sci, Gurayat, Saudi Arabia
关键词
Advection-diffusion system; Caputo fractional order derivative; Fourier decomposition; Mittag-Leffler function; Stability; NAVIER-STOKES SYSTEM; STABILIZABILITY; EQUATIONS; STABILIZATION; MODEL;
D O I
10.1016/j.chaos.2022.111949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a one dimensional advection-diffusion system in Caputo fractional order derivative. Using a Fourier decomposition and the Mittag-Leffler Function (MLF), we prove a new stability results for the solution of a such system. Numerical experiments were carried out at the end of this work to confirm the theoretical results obtained.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Stabilization method for the Saint-Venant equations by boundary control [J].
Arfaoui, Hassen .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (16) :3290-3302
[2]   BOUNDARY STABILIZABILITY OF THE LINEARIZED VISCOUS SAINT-VENANT SYSTEM [J].
Arfaoui, Hassen ;
Ben Belgacem, Faker ;
El Fekih, Henda ;
Raymond, Jean-Pierre .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03) :491-511
[3]   NEW ANALYTICAL SOLUTIONS OF HEAT TRANSFER FLOW OF CLAY-WATER BASE NANOPARTICLES WITH THE APPLICATION OF NOVEL HYBRID FRACTIONAL DERIVATIVE [J].
Asjad, Muhammad Imran ;
Ikram, Muhammad Danish ;
Ali, Rizwan ;
Baleanu, Dumitru ;
Alshomrani, Ali S. .
THERMAL SCIENCE, 2020, 24 (01) :S343-S350
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]  
Bajlekova E., 1998, FRACT CALC APPL ANAL, V1, P255
[6]   Dynamic cobweb models with conformable fractional derivatives [J].
Bohner, Martin ;
Hatipoglu, Veysel Fuat .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 32 :157-167
[7]   On systems of linear fractional differential equations with constant coefficients [J].
Bonilla, B. ;
Rivero, M. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :68-78
[8]  
Caputo M., 2015, Prog. Fract. Differ. Appl, V1, P73, DOI [10.12785/pfda/010201, DOI 10.12785/PFDA/010201]
[9]   Caputo fractional continuous cobweb models [J].
Chen, Churong ;
Bohner, Martin ;
Jia, Baoguo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374 (374)
[10]   Local stabilization of the compressible Navier-Stokes system, around null velocity, in one dimension [J].
Chowdhury, Shirshendu ;
Maity, Debayan ;
Ramaswamy, Mythily ;
Raymond, Jean-Pierre .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :371-407