The homotopy types of SU(4)-gauge groups over S8

被引:5
作者
Mohammadi, Sajjad [1 ]
Asadi-Golmankhaneh, Mohammad A. [2 ]
机构
[1] Univ Urmia, Dept Math, POB 5756151818, Orumiyeh, Iran
[2] Univ Urmia, Dept Math, POB 165, Orumiyeh, Iran
关键词
Gauge group; Homotopy type; Lie group; Homotopy equivalence; SAMELSON PRODUCTS;
D O I
10.1016/j.topol.2019.106845
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P-4,P-k be the principal SU(4)-bundle over S-8 with Chern class c(4)(P-4,P-k) = 6k and g(k) be the gauge group of P-4,P-k classified by k epsilon', where epsilon' a generator of pi(8) (B(SU (4))) congruent to Z. In this article we partially classify the homotopy types of g(k) by showing that if there is a homotopy equivalence G(k) similar or equal to G(k), then (420, k) = (420, k') and if (3360, k) is equal to (3360, k') then g(k) similar or equal to g(k'). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 19 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]   Counting homotopy types of gauge groups [J].
Crabb, MC ;
Sutherland, WA .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :747-768
[3]   The homotopy types of Sp(3)-gauge groups [J].
Cutler, Tyrone .
TOPOLOGY AND ITS APPLICATIONS, 2018, 236 :44-58
[4]   Unstable K1-group and homotopy type of certain gauge groups [J].
Hamanaka, H ;
Kono, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :149-155
[5]   On [X, U(n)] when dim X is 2n [J].
Hamanaka, H ;
Kono, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (02) :333-348
[6]   Samelson products in Sp(2) [J].
Hamanaka, Hiroaki ;
Kaji, Shizuo ;
Kono, Akira .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (11) :1207-1212
[7]   Homotopy type of gauge groups of SU(3)-bundles over S6 [J].
Hamanaka, Hiroaki ;
Kono, Akira .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (07) :1377-1380
[8]   On the cellular decomposition and the Lusternik-Schnirelmann category of Spin(7) [J].
Iwase, N ;
Mimura, M ;
Nishimoto, T .
TOPOLOGY AND ITS APPLICATIONS, 2003, 133 (01) :1-14
[9]   Samelson products of SO(3) and applications [J].
Kamiyama, Yasuhiko ;
Kishimoto, Daisuke ;
Kono, Akira ;
Tsukuda, Shuichi .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :405-409
[10]  
Kishimoto D., ARXIV180306477V2