共 88 条
Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta
被引:37
作者:
Paschalis, Eleftherios P.
[1
,2
]
Gamsjaeger, Sonja
[1
,2
]
Fratzl-Zelman, Nadja
[1
,2
]
Roschger, Paul
[1
,2
]
Masic, Admir
[3
]
Brozek, Wolfgang
[1
,2
]
Hassler, Norbert
[1
,2
]
Glorieux, Francis H.
[4
]
Rauch, Frank
[4
]
Klaushofer, Klaus
[1
,2
]
Fratzl, Peter
[3
]
机构:
[1] Hanusch Hosp WGKK, Ludwig Boltzmann Inst Osteol, Vienna, Austria
[2] Hanusch Hosp, AUVA Trauma Ctr Meidling, Dept Med 1, Vienna, Austria
[3] Max Planck Inst Colloids & Interfaces, Potsdam, Germany
[4] McGill Univ, Shriners Hosp Children, Genet Unit, Montreal, PQ, Canada
关键词:
OSTEOGENESIS IMPERFECTA;
NANOPOROSITY;
PYRDINOLINE;
MINERAL MATURITY/CRYSTALLINITY;
GLYCOSAMINOGLYCANS;
BONE MATERIAL PROPERTIES;
COLLAGEN CROSS-LINKS;
MOUSE MODEL;
SPECTROSCOPIC CHARACTERIZATION;
HYDROXYAPATITE FORMATION;
MECHANICAL-PROPERTIES;
MINERAL-COMPOSITION;
I COLLAGEN;
CHILDREN;
BIGLYCAN;
D O I:
10.1002/jbmr.2780
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type 1 represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of 1 tun as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency 01 type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v(1)PO(4) Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. (C) 2016 American Society for Bone and Mineral Research.
引用
收藏
页码:1050 / 1059
页数:10
相关论文