THE KATETOV-MORITA THEOREM FOR THE DIMENSION OF METRIC FRAMES

被引:7
作者
Brijlall, D. [1 ]
Baboolal, D.
机构
[1] Univ KwaZulu Natal, Sch Sci Math & Technol Educ, ZA-4000 Durban, South Africa
关键词
Dimension; metric frames;
D O I
10.1007/s13226-010-0025-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The results which appear here are devoted to the dimension theory of metric frames. We begin by characterizing the covering dimension dim of metric frames in terms of special sequences of covers and then prove the fundamental Katetov-Morita Theorem asserting that Ind L = dim L for every metric frame L. Next, we establish two characterizations of the dimension function Ind in Metric frames, one in terms of special bases and another in terms of decompositions into subspaces of dimension zero. These characterizations yield a sum theorem.
引用
收藏
页码:535 / 553
页数:19
相关论文
共 12 条
  • [1] BANASCHEWSKI B, 1989, J LOND MATH SOC, V39, P1
  • [2] Brijlall D, 2008, INDIAN J PURE AP MAT, V39, P375
  • [3] DOWKER CH, 1975, S MATH, V16, P93
  • [4] Dube T, 1994, Quaestiones Mathematicae, V17, P333
  • [5] Engelking R., 1989, General topology
  • [6] On point-finiteness in pointfree topology
    Ferreira, Maria Joao
    Picado, Jorge
    [J]. APPLIED CATEGORICAL STRUCTURES, 2007, 15 (1-2) : 185 - 198
  • [7] Isbell J., 1985, LONDON MATH SOC LECT, V93, P195
  • [8] Johnstone PT., 1982, Stone Spaces
  • [9] Quotient maps of locales
    Plewe, T
    [J]. APPLIED CATEGORICAL STRUCTURES, 2000, 8 (1-2) : 17 - 44
  • [10] PULTR A, 1989, MATH P CAMBRIDGE PHI, P285