Weil pairings and Morava K-theory

被引:8
作者
Ando, M
Strickland, NP
机构
[1] Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
Morava K-theory; well pairings; connective covers;
D O I
10.1016/S0040-9383(99)00057-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of a special case of a theorem Hopkins and the authors, relating the Morava K-theory of BU (6) to the theory of cubical structures on formal groups. In the process we relate the Morava K-theory of the Eilenberg-MacLane space K(Z, 3) to the theory of Well pairings, and we appeal to results of algebraic geometers about biextensions. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:127 / 156
页数:30
相关论文
共 12 条
[1]  
Adams JF., 1974, Stable Homotopy and Generalised Homology
[2]  
BREEN L, 1983, LECT NOTES MATH, V980
[3]  
CANDILERA M, 1983, ANN SCUOLA NORM SU S, P10
[4]  
Demazure M., 1970, GROUPES ALGEBRIQUES, V1
[5]  
Demazure M., 1972, LECT NOTES MATH, V302
[6]  
HOPKINS MJ, 1998, ELLIPTIC SPECTRA WIT
[7]  
HUNTON JR, 1998, J PURE APPL ALGEB, V129
[8]  
JOHNSON DC, 1982, AM J MATH, V104
[9]  
MUMFORD D, 1965, ARITHMETIC ALGEBRAIC
[10]  
RAVENEL DC, 1980, AM J MATH, V102