Characterizations of pseudo-codewords of (low-density) parity-check codes

被引:38
作者
Koetter, Ralf
Li, Wen-Ching W.
Vontobel, Pascal O.
Walker, Judy L. [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Tech Univ Munich, Inst Commun Engn, D-80333 Munich, Germany
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Hewlett Packard Labs, Palo Alto, CA 94304 USA
基金
美国国家科学基金会;
关键词
(low-density) parity-check codes; pseudo-codewords; fundamental cone; graph covers; zeta functions; Newton polyhedron;
D O I
10.1016/j.aim.2006.12.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important property of low-density parity-check codes is the existence of highly efficient algorithms for their decoding. Many of the most efficient, recent graph-based algorithms, e.g. message-passing iterative decoding and linear programming decoding, crucially depend on the efficient representation of a code in a graphical model. In order to understand the performance of these algorithms, we argue for the characterization of codes in terms of a so-called fundamental cone in Euclidean space. This cone depends upon a given parity-check matrix of a code, rather than on the code itself. We give a number of properties of this fundamental cone derived from its connection to unramified covers of the graphical models on which the decoding algorithms operate. For the class of cycle codes, these developments naturally lead to a characterization of the fundamental cone as the Newton polyhedron of the Hashimoto edge zeta function of the underlying graph. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:205 / 229
页数:25
相关论文
共 9 条
[1]  
Deza M., 1997, ALGORITHMS COMBINATO, V15
[2]   Using linear programming to decode binary linear codes [J].
Feldman, J ;
Wainwright, MJ ;
Karger, DR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) :954-972
[3]   Codes on graphs: Normal realizations [J].
Forney, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :520-548
[4]  
Hashimoto K., 1989, Adv. Stud. Pure Math., V15, P211, DOI DOI 10.1016/B978-0-12-330580-0.50015-X
[5]  
Koetter R, 2004, 2004 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, P7
[6]  
KOETTER R, 2003, P 3 INT S TURB COD R, P75
[7]   Factor graphs and the sum-product algorithm [J].
Kschischang, FR ;
Frey, BJ ;
Loeliger, HA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :498-519
[8]   Zeta functions of finite graphs and coverings [J].
Stark, HM ;
Terras, AA .
ADVANCES IN MATHEMATICS, 1996, 121 (01) :124-165
[9]  
West D. B., 2002, Introduction to Graph Theory