The α-spectral radius of uniform hypergraphs concerning degrees and domination number

被引:0
作者
Wang, Qiannan [2 ]
Kang, Liying [2 ]
Shan, Erfang [1 ]
Liang, Zuosong [3 ]
机构
[1] Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Qufu Normal Univ, Sch Management, Rizhao 276800, Peoples R China
关键词
Uniform hypergraph; alpha-Spectral radius; Extremal hypergraph; Domination; NONNEGATIVE TENSORS; EIGENVALUES;
D O I
10.1007/s10878-019-00440-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For 0 <= alpha < 1 and an r-uniform hypergraph H, the a-spectral radius of H is the maximum modulus of eigenvalues of alpha D(H) + (1 - alpha)A(H), where D(H) and A(H) are the diagonal tensor of degrees and the adjacency tensor of H, respectively. In this paper, we give a lower bound on the a-spectral radius of a linear alpha-uniform hypergraph in terms of its domination number. Then, we obtain some bounds on the aspectral radius in terms of vertex degrees and we characterize the extremal hypergraphs attaining the bound.
引用
收藏
页码:1128 / 1142
页数:15
相关论文
共 50 条
[21]   The (Signless Laplacian) Spectral Radius (Of Subgraphs) of Uniform Hypergraphs [J].
Duan, Cunxiang ;
Wang, Ligong ;
Xiao, Peng ;
Li, Xihe .
FILOMAT, 2019, 33 (15) :4733-4745
[22]   The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-spectral radius of uniform hypergraphs concerning degrees and domination number [J].
Qiannan Wang ;
Liying Kang ;
Erfang Shan ;
Zuosong Liang .
Journal of Combinatorial Optimization, 2019, 38 (4) :1128-1142
[23]   Extremal hypergraphs for matching number and domination number [J].
Shan, Erfang ;
Dong, Yanxia ;
Kang, Liying ;
Li, Shan .
DISCRETE APPLIED MATHEMATICS, 2018, 236 :415-421
[24]   The α-spectral radius of general hypergraphs [J].
Lin, Hongying ;
Zhou, Bo .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
[25]   Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs [J].
He, Jun ;
Liu, Yan-Min ;
Tian, Jun-Kang ;
Liu, Xiang-Hu .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (02) :583-591
[26]   On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs [J].
Khan, Murad-ul-Islam ;
Fan, Yi-Zheng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 480 :93-106
[27]   On the spectral radius of uniform hypertrees [J].
Guo, Haiyan ;
Zhou, Bo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 558 :236-249
[28]   Bounds on the spectral radius of general hypergraphs in terms of clique number [J].
Duan, Cunxiang ;
Wang, Ligong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 :120-134
[29]   Characterizing upper bounds of Z-spectral radius of uniform hypergraphs [J].
Xin, Quanfeng ;
Wang, Gang .
DISCRETE APPLIED MATHEMATICS, 2025, 365 :100-108
[30]   A bound on the spectral radius of hypergraphs with e edges [J].
Bai, Shuliang ;
Lu, Linyuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 549 :203-218