Numerical multi-loop calculations via finite integrals and one-mass EW-QCD Drell-Yan master integrals

被引:23
作者
von Manteuffel, Andreas [1 ,2 ]
Schabinger, Robert M. [3 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, 648 N Shaw Lane, E Lansing, MI 48824 USA
[2] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Staudinger Weg 7, D-55099 Mainz, Germany
[3] Trinity Coll Dublin, Hamilton Math Inst, Dublin 2, Ireland
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2017年 / 04期
基金
欧洲研究理事会;
关键词
Perturbative QCD; Quark Masses and SM Parameters; DIFFERENTIAL-EQUATIONS METHOD; FEYNMAN-INTEGRALS; HADRON COLLIDERS; ALGORITHM; PARTS; EXPANSION; QUARK;
D O I
10.1007/JHEP04(2017)129
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a recently-proposed approach to the numerical evaluation of multi-loop Feynman integrals using available sector decomposition programs. As our main example, we consider the two-loop integrals for the alpha alpha(s) corrections to Drell-Yan lepton production with up to one massive vector boson in physical kinematics. As a reference, we evaluate these planar and non-planar integrals by the method of differential equations through to weight five. Choosing a basis of finite integrals for the numerical evaluation with SecDec 3 leads to tremendous performance improvements and renders the otherwise problematic seven-line topologies numerically accessible. As another example, basis integrals for massless QCD three loop form factors are evaluated with FIESTA 4. Here, employing a basis of finite integrals results in an overall speedup of more than an order of magnitude.
引用
收藏
页数:24
相关论文
共 80 条
  • [31] On the reduction of generalized polylogarithms to Lin and Li2,2 and on the evaluation thereof
    Frellesvig, Hjalte
    Tommasini, Damiano
    Wever, Christopher
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [32] Two-loop quark and gluon form factors in dimensional regularisation
    Gehrmann, T
    Huber, T
    Maître, D
    [J]. PHYSICS LETTERS B, 2005, 622 (3-4) : 295 - 302
  • [33] Calculation of the quark and gluon form factors to three loops in QCD
    Gehrmann, T.
    Glover, E. W. N.
    Huber, T.
    Ikizlerli, N.
    Studerus, C.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [34] Differential equations for two-loop four-point functions
    Gehrmann, T
    Remiddi, E
    [J]. NUCLEAR PHYSICS B, 2000, 580 (1-2) : 485 - 518
  • [35] Gehrmann T, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2015)128
  • [36] Gehrmann T, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2014)032
  • [37] Georgoudis A., ARXIV161204252
  • [38] Gituliar O., ARXIV170104269
  • [39] Galois symmetries of fundamental groupoids and noncommutative geometry
    Goncharov, AB
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 128 (02) : 209 - 284
  • [40] DIMENSIONALLY REGULARIZED 2-LOOP ON-SHELL QUARK FORM-FACTOR
    GONSALVES, RJ
    [J]. PHYSICAL REVIEW D, 1983, 28 (06): : 1542 - 1549