Optimizing magnetic heating of isolated magnetic nanowires (MNWs) by simulation

被引:2
作者
Chen, Yicong [1 ]
Harpel, Allison [1 ]
Stadler, Bethanie J. Hills [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
关键词
GIANT MAGNETORESISTANCE; GMR; HYPERTHERMIA; SPINTRONICS;
D O I
10.1063/9.0000335
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic properties such as coercivity, remanence and saturation magnetization will determine the area enclosed by the hysteresis loop of a magnetic material, which also represents magnetic heating. Nanowarming of cryopreserved organs is a new application for magnetic heating using nanoparticles. In this paper, isolated Ni MNW of different sizes and shapes are studied via micromagnetic simulation to explore the optimization of heating using individual MNW. Ellipsoidal MNWs with small (30nm) diameters turn out to be most promising in heating ability due to their large hysteresis area and their potential to distribute uniformly in an organ that is being heated. In addition to optimized heating, a special switching pattern of magnetic moment was also observed for cylindrical large (200nm) MNW. This special switching pattern can trigger applications such as quantum computing. (C) 2022 Author(s).
引用
收藏
页数:5
相关论文
共 30 条
[21]   GIANT MAGNETORESISTANCE IN MAGNETIC MULTILAYERED NANOWIRES [J].
PIRAUX, L ;
GEORGE, JM ;
DESPRES, JF ;
LEROY, C ;
FERAIN, E ;
LEGRAS, R ;
OUNADJELA, K ;
FERT, A .
APPLIED PHYSICS LETTERS, 1994, 65 (19) :2484-2486
[22]   Annealed Cobalt-Carbon Nanocomposites for Room-Temperature Spintronic Applications [J].
Puydinger dos Santos, Marcos, V ;
Brandao, Jeovani ;
Dugato, Danian A. ;
Beron, Fanny ;
Pirota, Kleber R. ;
Utke, Ivo .
ACS APPLIED NANO MATERIALS, 2020, 3 (07) :7143-7151
[23]   Pulse-Width and Temperature Effect on the Switching Behavior of an Etch-Stop-on-MgO-Barrier Spin-Orbit Torque MRAM Cell [J].
Rahaman, Sk Ziaur ;
Wang, I-Jung ;
Chen, Tian-Yue ;
Pai, Chi-Feng ;
Wang, Ding-Yeong ;
Wei, Jeng-Hua ;
Lee, Hsin-Han ;
Hsin, Yu-Chen ;
Chang, Yao-Jen ;
Yang, Shan-Yi ;
Kuo, Yi-Ching ;
Su, Yi-Hui ;
Chen, Yu-Sheng ;
Huang, Keh-Ching ;
Wu, Chih-, I ;
Deng, Duan-Li .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (09) :1306-1309
[24]   Magnetization reversal mechanisms in 35-nm diameter Fe1-xGax/Cu multilayered nanowires [J].
Reddy, Sai Madhukar ;
Park, Jung Jin ;
Maqableh, Mazin M. ;
Flatau, Alison B. ;
Stadler, Bethanie J. H. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[25]   Vitrification and Nanowarming of Kidneys [J].
Sharma, Anirudh ;
Rao, Joseph Sushil ;
Han, Zonghu ;
Gangwar, Lakshya ;
Namsrai, Baterdene ;
Gao, Zhe ;
Ring, Hattie L. ;
Magnuson, Elliott ;
Etheridge, Michael ;
Wowk, Brian ;
Fahy, Gregory M. ;
Garwood, Michael ;
Finger, Erik B. ;
Bischof, John C. .
ADVANCED SCIENCE, 2021, 8 (19)
[26]   Nanowarming using Au-tipped Co35Fe65 ferromagnetic nanowires [J].
Shore, Daniel ;
Ghemes, Adrian ;
Dragos-Pinzaru, Oana ;
Gao, Zhe ;
Shao, Qi ;
Sharma, Anirudh ;
Um, Joseph ;
Tabakovic, Ibro ;
Bischof, John C. ;
Stadler, Bethanie J. H. .
NANOSCALE, 2019, 11 (31) :14607-14615
[27]   Electrodeposited Fe and Fe-Au nanowires as MRI contrast agents [J].
Shore, Daniel ;
Pailloux, Sylvie L. ;
Zhang, Jinjin ;
Gage, Thomas ;
Flannigan, David J. ;
Garwood, Michael ;
Pierre, Valerie C. ;
Stadler, Bethanie J. H. .
CHEMICAL COMMUNICATIONS, 2016, 52 (85) :12634-12637
[28]   Inhomogeneous domain walls in spintronic nanowires [J].
Siemer, L. ;
Ovsyannikov, I ;
Rademacher, J. D. M. .
NONLINEARITY, 2020, 33 (06) :2905-2941
[29]  
Vazquez M., 2015, MAGNETIC NANO AND MI
[30]   Development of a Biolabeling System Using Ferromagnetic Nanowires [J].
Zhou, Wen ;
Um, Joseph ;
Zhang, Yali ;
Nelson, Alexander P. ;
Nemati, Zohreh ;
Modiano, Jaime ;
Stadler, Bethanie ;
Franklin, Rhonda .
IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY, 2019, 3 (02) :134-142