Optimizing magnetic heating of isolated magnetic nanowires (MNWs) by simulation

被引:2
作者
Chen, Yicong [1 ]
Harpel, Allison [1 ]
Stadler, Bethanie J. Hills [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
关键词
GIANT MAGNETORESISTANCE; GMR; HYPERTHERMIA; SPINTRONICS;
D O I
10.1063/9.0000335
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic properties such as coercivity, remanence and saturation magnetization will determine the area enclosed by the hysteresis loop of a magnetic material, which also represents magnetic heating. Nanowarming of cryopreserved organs is a new application for magnetic heating using nanoparticles. In this paper, isolated Ni MNW of different sizes and shapes are studied via micromagnetic simulation to explore the optimization of heating using individual MNW. Ellipsoidal MNWs with small (30nm) diameters turn out to be most promising in heating ability due to their large hysteresis area and their potential to distribute uniformly in an organ that is being heated. In addition to optimized heating, a special switching pattern of magnetic moment was also observed for cylindrical large (200nm) MNW. This special switching pattern can trigger applications such as quantum computing. (C) 2022 Author(s).
引用
收藏
页数:5
相关论文
共 30 条
[1]   FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia [J].
Alonso, J. ;
Khurshid, H. ;
Sankar, V. ;
Nemati, Z. ;
Phan, M. H. ;
Garayo, E. ;
Garcia, J. A. ;
Srikanth, H. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
[2]   Spintronics based random access memory: a review [J].
Bhatti, Sabpreet ;
Sbiaa, Rachid ;
Hirohata, Atsufumi ;
Ohno, Hideo ;
Fukami, Shunsuke ;
Piramanayagam, S. N. .
MATERIALS TODAY, 2017, 20 (09) :530-548
[3]   GIANT MAGNETORESISTANCE OF NANOWIRES OF MULTILAYERS [J].
BLONDEL, A ;
MEIER, JP ;
DOUDIN, B ;
ANSERMET, JP .
APPLIED PHYSICS LETTERS, 1994, 65 (23) :3019-3021
[4]   Hyperthermia with magnetic nanowires for inactivating living cells [J].
Choi, D. S. ;
Park, J. ;
Kim, S. ;
Gracias, D. H. ;
Cho, M. K. ;
Kim, Y. K. ;
Fung, A. ;
Lee, S. E. ;
Chen, Y. ;
Khanal, S. ;
Baral, S. ;
Kim, J. -H. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (05) :2323-2327
[5]   Creating magnetic field sensors from GMR nanowire networks [J].
Cox, Bryan ;
Davis, Despina ;
Crews, Niel .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 203 :335-340
[6]  
Cullity BD., 2011, Introduction to magnetic materials
[7]   Who captures value from science-based innovation? The distribution of benefits from GMR in the hard disk drive industry [J].
Dedrick, Jason ;
Kraemer, Kenneth L. .
RESEARCH POLICY, 2015, 44 (08) :1615-1628
[8]  
Donahue M., 1999, Tech. Rep. 6376, DOI DOI 10.6028/NIST.IR.6376
[9]   Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction [J].
Egolf, Peter W. ;
Shamsudhin, Naveen ;
Pane, Salvador ;
Vuarnoz, Didier ;
Pokki, Juho ;
Pawlowski, Anne-Gabrielle ;
Tsague, Paulin ;
de Marco, Bastien ;
Bovy, William ;
Tucev, Sinisa ;
Ansari, M. H. D. ;
Nelson, Bradley J. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (06)
[10]   Current perpendicular to plane single-nanowire GMR sensor [J].
Enculescu, I. ;
Toimil-Molares, M. E. ;
Zet, C. ;
Daub, M. ;
Westerberg, L. ;
Neumann, R. ;
Spohr, R. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 86 (01) :43-47