Proof-of-Principle Direct Measurement of Landau Damping Strength at the Large Hadron Collider with an Antidamper

被引:6
作者
Antipov, S. A. [1 ,2 ]
Amorim, D. [1 ,3 ]
Biancacci, N. [1 ]
Buffat, X. [1 ]
Metral, E. [1 ]
Mounet, N. [1 ]
Oeftiger, A. [1 ,4 ]
Valuch, D. [1 ]
机构
[1] European Org Nucl Res CERN, CH-1211 Geneva, Switzerland
[2] Deutsch Elektronen Synchrotron DESY, D-20459 Hamburg, Germany
[3] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
[4] Helmholtzzentrum Schwerionenforsch GSI, D-64291 Darmstadt, Germany
关键词
Microstrip devices - Stability - Damping - Hadrons;
D O I
10.1103/PhysRevLett.126.164801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Landau damping is an essential mechanism for ensuring collective beam stability in particle accelerators. Precise knowledge of the strength of Landau damping is key to making accurate predictions on beam stability for state-of-the-art high-energy colliders. In this Letter, we demonstrate an experimental procedure that would allow quantifying the strength of Landau damping and the limits of beam stability using an active transverse feedback as a controllable source of beam coupling impedance. In a proof-of-principle test performed at the Large Hadron Collider, stability diagrams for a range of Landau octupole strengths have been measured. In the future, the procedure could become an accurate way of measuring stability diagrams throughout the machine cycle.
引用
收藏
页数:6
相关论文
共 43 条
[1]   FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3 [J].
Abada, A. ;
Abbrescia, M. ;
AbdusSalam, S. S. ;
Abdyukhanov, I. ;
Abelleira Fernandez, J. ;
Abramov, A. ;
Aburaia, M. ;
Acar, A. O. ;
Adzic, P. R. ;
Agrawal, P. ;
Aguilar-Saavedra, J. A. ;
Aguilera-Verdugo, J. J. ;
Aiba, M. ;
Aichinger, I. ;
Aielli, G. ;
Akay, A. ;
Akhundov, A. ;
Aksakal, H. ;
Albacete, J. L. ;
Albergo, S. ;
Alekou, A. ;
Aleksa, M. ;
Aleksan, R. ;
Alemany Fernandez, R. M. ;
Alexahin, Y. ;
Alia, R. G. ;
Alioli, S. ;
Alipour Tehrani, N. ;
Allanach, B. C. ;
Allport, P. P. ;
Altinli, M. ;
Altmannshofer, W. ;
Ambrosio, G. ;
Amorim, D. ;
Amstutz, O. ;
Anderlini, L. ;
Andreazza, A. ;
Andreini, M. ;
Andriatis, A. ;
Andris, C. ;
Andronic, A. ;
Angelucci, M. ;
Antinori, F. ;
Antipov, S. A. ;
Antonelli, M. ;
Antonello, M. ;
Antonioli, P. ;
Antusch, S. ;
Anulli, F. ;
Apolinario, L. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (04) :755-1107
[2]  
[Anonymous], 2008, SIS100 FAIR GSI
[3]   IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program [J].
Antipov, S. ;
Broemmelsiek, D. ;
Bruhwiler, D. ;
Edstrom, D. ;
Harms, E. ;
Lebedev, V. ;
Leibfritz, J. ;
Nagaitsev, S. ;
Park, C. S. ;
Piekarz, H. ;
Piot, P. ;
Prebys, E. ;
Romanov, A. ;
Ruan, J. ;
Sen, T. ;
Stancari, G. ;
Thangaraj, C. ;
Thurman-Keup, R. ;
Valishev, A. ;
Shiltsev, V. .
JOURNAL OF INSTRUMENTATION, 2017, 12
[4]  
Apollinari G., CERN-2015-005
[5]  
Bartolini R., 2017, P IPAC2017 COP DENM
[6]  
Berg J. S., 1996, CERNSLAP96071AP
[7]  
BRUNING O, CERN Report, CERN- 2004-003-V1
[8]  
Buffat X., 2019, SUMMARY INSTABILITY
[9]   Nested head-tail Vlasov solver [J].
Burov, A. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2014, 17 (02)
[10]  
Butterworth A, 2015, P EVIAN 15 EV LES BA