Drivers of trophic amplification of ocean productivity trends in a changing climate

被引:84
作者
Stock, C. A. [1 ]
Dunne, J. P. [1 ]
John, J. G. [1 ]
机构
[1] NOAA Geophys Fluid Dynam Lab, 201 Forrestal Rd, Princeton, NJ 08540 USA
关键词
PHYTOPLANKTON GROWTH; PART I; ECOSYSTEM MODEL; TIME-SERIES; MARINE; PLANKTON; FORMULATION; PATTERNS; SYSTEM; RATIO;
D O I
10.5194/bg-11-7125-2014
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Pronounced projected 21st century trends in regional oceanic net primary production (NPP) raise the prospect of significant redistributions of marine resources. Recent results further suggest that NPP changes may be amplified at higher trophic levels. Here, we elucidate the role of planktonic food web dynamics in driving projected changes in mesozooplankton production (MESOZP) found to be, on average, twice as large as projected changes in NPP by the latter half of the 21st century under a high emissions scenario in the Geophysical Fluid Dynamics Laboratory's ESM2M-COBALT (Carbon, Ocean Biogeochemistry and Lower Trophics) earth system model. Globally, MESOZP was projected to decline by 7.9% but regional MESOZP changes sometimes exceeded 50 %. Changes in three planktonic food web properties - zooplankton growth efficiency (ZGE), the trophic level of mesozooplankton (MESOTL), and the fraction of NPP consumed by zooplankton (zooplankton-phytoplankton coupling, ZPC), explain the projected amplification. Zooplankton growth efficiencies (ZGE) changed with NPP, amplifying both NPP increases and decreases. Negative amplification (i.e., exacerbation) of projected subtropical NPP declines via this mechanism was particularly strong since consumers in the subtropics have limited surplus energy above basal metabolic costs. Increased mesozooplankton trophic level (MESOTL) resulted from projected declines in large phytoplankton production. This further amplified negative subtropical NPP declines but was secondary to ZGE and, at higher latitudes, was often offset by increased ZPC. Marked ZPC increases were projected for high-latitude regions experiencing shoaling of deep winter mixing or decreased winter sea ice both tending to increase winter zooplankton biomass and enhance grazer control of spring blooms. Increased ZPC amplified projected NPP increases in the Arctic and damped projected NPP declines in the northwestern Atlantic and Southern Ocean. Improved understanding of the physical and biological interactions governing ZGE, MESOTL and ZPC is needed to further refine estimates of climate-driven productivity changes across trophic levels.
引用
收藏
页码:7125 / 7135
页数:11
相关论文
共 70 条
[1]   The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations [J].
Anderson, JL ;
Balaji, V ;
Broccoli, AJ ;
Cooke, WF ;
Delworth, TL ;
Dixon, KW ;
Donner, LJ ;
Dunne, KA ;
Freidenreich, SM ;
Garner, ST ;
Gudgel, RG ;
Gordon, CT ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhost, AR ;
Lau, NC ;
Liang, Z ;
Malyshev, SL ;
Milly, PCD ;
Nath, MJ ;
Ploshay, JJ ;
Ramaswamy, V ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Soden, BJ ;
Stern, WF ;
Thompson, LA ;
Wilson, RJ ;
Wittenberg, AT ;
Wyman, BL .
JOURNAL OF CLIMATE, 2004, 17 (24) :4641-4673
[2]   A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals [J].
Armstrong, RA ;
Lee, C ;
Hedges, JI ;
Honjo, S ;
Wakeham, SG .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 49 (1-3) :219-236
[3]   An ecosystem model of the global ocean including Fe, Si, P colimitations [J].
Aumont, O ;
Maier-Reimer, E ;
Blain, S ;
Monfray, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (02)
[4]   THE PRODUCTION OF DISSOLVED ORGANIC-MATTER BY PHYTOPLANKTON AND ITS IMPORTANCE TO BACTERIA - PATTERNS ACROSS MARINE AND FRESH-WATER SYSTEMS [J].
BAINES, SB ;
PACE, ML .
LIMNOLOGY AND OCEANOGRAPHY, 1991, 36 (06) :1078-1090
[5]  
Barange M, 2014, NAT CLIM CHANGE, V4, P211, DOI [10.1038/NCLIMATE2119, 10.1038/nclimate2119]
[6]   Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models [J].
Bopp, L. ;
Resplandy, L. ;
Orr, J. C. ;
Doney, S. C. ;
Dunne, J. P. ;
Gehlen, M. ;
Halloran, P. ;
Heinze, C. ;
Ilyina, T. ;
Seferian, R. ;
Tjiputra, J. ;
Vichi, M. .
BIOGEOSCIENCES, 2013, 10 (10) :6225-6245
[7]   Potential impact of climate change on marine export production [J].
Bopp, L ;
Monfray, P ;
Aumont, O ;
Dufresne, JL ;
Le Treut, H ;
Madec, G ;
Terray, L ;
Orr, JC .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (01) :81-99
[8]   Particle Aggregation [J].
Burd, Adrian B. ;
Jackson, George A. .
ANNUAL REVIEW OF MARINE SCIENCE, 2009, 1 :65-90
[9]   Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems [J].
Calbet, A ;
Landry, MR .
LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (01) :51-57
[10]  
Carlotti F., 2000, P571, DOI 10.1016/B978-012327645-2/50013-X