NiS2 nanodots on N,S-doped graphene synthesized via interlayer confinement for enhanced lithium-/sodium-ion storage

被引:24
作者
Dong, Xiaofen [1 ]
Chen, Feijiang [2 ]
Chen, Guoguang [1 ]
Wang, Bin [3 ]
Tian, Xiaoli [1 ]
Yan, Xiaolong [1 ]
Yin, Ya-Xia [4 ]
Deng, Chengwei [2 ]
Wang, Duan [5 ]
Mao, Jianfeng [6 ]
Xu, Sailong [2 ]
Zhang, Shilin [6 ]
机构
[1] North Univ China, Sch Mech & Elect Engn, Taiyuan 030051, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[3] Shanxi North Xingan Chem Ind Corp Ltd, Taiyuan 030003, Peoples R China
[4] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, Inst Chem, Beijing 100190, Peoples R China
[5] North Univ China, Sch Environm & Safety Engn, Taiyuan 030051, Peoples R China
[6] Univ Wollongong, Sch Mech Mechatron & Biomed Engn, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
关键词
Interlayer confinement; Host; guest precursor; NiS2; nanodots; Carbon-based composite nanomaterials; Lithium-and sodium-ion batteries; HIGH-PERFORMANCE ANODE; CARBON; BATTERIES; ELECTRODE; NITROGEN; SPHERES;
D O I
10.1016/j.jcis.2022.03.131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design of high-capacity nanosized composites as anode nanomaterials is crucial to boosting electrochemical performances towards large-scale application for lithium-and sodium-ion batteries (LIBs and SIBs). The small sizes and homogeneous dimensional size distributions are achieved typically by either the surface confinement on the underlying supports, or the encapsulation confinement within the precursors (such as metal-organic frameworks). Herein, we report the ultrasmall NiS2 nanodots on reduced graphene oxide (NiS2/N,S-rGO) synthesized via interlayer confinement as anode nanomaterials for LIBs and SIBs. The composite is synthesized by pyrolyzing a host/guest precursor of sodium dodecyl sulfate ion/[NiEDTA(]2-) anions co-intercalated MgAl-layered double hydroxide LDH host, without additional sulfur source. The host/guest-derived interlayer nanoconfinement enables the composite to integrate the advantageous features: low-content active NiS2 nanodots (11.0 wt%) with a mean size of 3. 8 +/- 0.5 nm, high-content N,S-rGO (89.0 wt%), as well as a large specific surface area and mesopore size distribution. The composite used as anode nanomaterial exhibits reversible capacities of 801.2 mAh g(-1) after 100 cycles at 100 mA g(-1) for LIBs, and 207.7 mAh g(-1) after 200 cycles at 0.1 A g(-1) for SIBs, which are greatly higher than those of the pristine N,S-rGO without NiS2 nanodots. The enhancement is experimentally supported by the low charge transfer resistance, high capacitive-controlled contribution, and good structural stability. Our guest/host-based interlayer nanoconfinement can promise an effective synthesis strategy for designing various nanosized anodes for electrochemical energy storage. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 58 条
[1]   C-Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Na-Ion Storage [J].
Chao, Dongliang ;
Ouyang, Bo ;
Liang, Pei ;
Tran Thi Thu Huong ;
Jia, Guichong ;
Huang, Hui ;
Xia, Xinhui ;
Rawat, Rajdeep Singh ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2018, 30 (49)
[2]   Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level [J].
Chen, Biao ;
Chao, Dongliang ;
Liu, Enzuo ;
Jaroniec, Mietek ;
Zhao, Naiqin ;
Qiao, Shi-Zhang .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (04) :1096-1131
[3]   MgAl Layered Double Hydroxides Intercalated with EDTA: Cu(II) Recovery and Mechanism [J].
Chen, Liangzhe ;
Tu, Qian ;
Yang, Xingyan ;
Hu, Xiaolin ;
Sun, Xinyu ;
Li, Houbin .
CHEMISTRYSELECT, 2020, 5 (36) :11299-11304
[4]  
Chen P, 2014, ENERG ENVIRON SCI, V7, P4095, DOI [10.1039/C4EE02531H, 10.1039/c4ee02531h]
[5]  
Chen W, 2021, ENERG ENVIRON SCI, V14, P6428, DOI [10.1039/D1EE01395E, 10.1039/d1ee01395e]
[6]   Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure [J].
Duffner, Fabian ;
Kronemeyer, Niklas ;
Tuebke, Jens ;
Leker, Jens ;
Winter, Martin ;
Schmuch, Richard .
NATURE ENERGY, 2021, 6 (02) :123-134
[7]   A Versatile Pyramidal Hauerite Anode in Congeniality Diglyme-Based Electrolytes for Boosting Performance of Li- and Na-Ion Batteries [J].
Duong Tung Pham ;
Trang Thi Vu ;
Kim, Sungjin ;
Sambandam, Balaji ;
Mathew, Vinod ;
Lim, Jinsub ;
Kim, Jaekook .
ADVANCED ENERGY MATERIALS, 2019, 9 (37)
[8]   One-step sonochemical fabrication of biomass-derived porous hard carbons; towards tuned-surface anodes of sodium-ion batteries [J].
Ghani, Usman ;
Iqbal, Nousheen ;
Aboalhassan, Ahmed A. ;
Liu, Bowen ;
Aftab, Tabish ;
Zada, Imran ;
Ullah, Farman ;
Gu, Jiajun ;
Li, Yao ;
Zhu, Shenmin ;
Liu, Qinglei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 611 :578-587
[9]   Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview [J].
Hasa, Ivana ;
Hassoun, Jusef ;
Passerini, Stefano .
NANO RESEARCH, 2017, 10 (12) :3942-3969
[10]   Electron-Injection-Engineering Induced Phase Transition toward Stabilized 1T-MoS2 with Extraordinary Sodium Storage Performance [J].
He, Hanna ;
Li, Xiaolong ;
Huang, Dan ;
Luan, Jinyi ;
Liu, Sailin ;
Pang, Wei Kong ;
Sun, Dan ;
Tang, Yougen ;
Zhou, Wenzheng ;
He, Lirong ;
Zhang, Chuhong ;
Wang, Haiyan ;
Guo, Zaiping .
ACS NANO, 2021, 15 (05) :8896-8906