Strong convergence of hybrid Halpern iteration for Bregman totally quasi-asymptotically nonexpansive multi-valued mappings in reflexive Banach spaces with application

被引:0
作者
Li, Yi [1 ]
Liu, Hongbo [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Sichuan, Peoples R China
关键词
Bregman totally quasi-asymptotically nonexpansive multi-valued mapping; Legendre functions; Bregman projection; fixed point; hybrid Halpern's iteration; shrinking projection method; FIXED-POINTS; OPERATORS; THEOREMS; ALGORITHM;
D O I
10.1186/1687-1812-2014-186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, Bregman totally quasi-asymptotically nonexpansive multi-valued mappings in the framework of reflexive Banach spaces are established. Under suitable limit conditions, by using the shrinking projection method introduced by Takahashi, Kubota and Takeuchi, some strong convergence theorems for hybrid Halpern's iteration for a countable family of Bregman totally quasi-asymptotically nonexpansive multi-valued mappings are proved. We apply our main results to solve classical equilibrium problems in the framework of reflexive Banach spaces. The main result presented in the paper improves and extends the corresponding result in the work by Chang (Appl. Math. Comput. 2013, doi: 10.1016/j.amc.2013.11.074; Appl. Math. Comput. 228:38-48, 2014), Suthep (Comput. Math. Appl., 64:489-499, 2012), Yi Li (Fixed Point Theory Appl. 2013: 197, 2013), Reich and Sabach (Nonlinear Anal. 73:122-135, 2010), Nilsrakoo and Saejung (Appl. Math. Comput. 217(14):6577-6586, 2011), Qin et al. (Appl. Math. Lett. 22:1051-1055, 2009), Wang et al. (J. Comput. Appl. Math. 235:2364-2371, 2011), Su et al. (Nonlinear Anal. 73:3890-3906, 2010) and others.
引用
收藏
页数:16
相关论文
共 41 条
[1]  
Alber Y.I., 1996, LECT NOTES PURE APPL, P15
[2]  
Ambrosetti A., 1993, PRIMER NONLINEAR ANA
[3]   GRADIENTS OF CONVEX FUNCTIONS [J].
ASPLUND, E ;
ROCKAFEL.RT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) :443-&
[4]  
Bauschke HeinzH., 1997, J. Convex Anal., V4, P27
[5]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[6]   Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :615-647
[7]  
Bonnans JF, 2000, Perturbation Analysis of Optimization Problems
[8]  
Borwein JM, 2011, J NONLINEAR CONVEX A, V12, P161
[9]  
Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[10]  
Butnariu D., 2000, Totally convex functions for fixed points computation and infinite dimensional optimization