Let G be a simple undirected graph on n vertices, and let I(G) subset of R = k[ x(1),..., x(n)] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi's theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and implies Herzog, Hibi, and Zheng's theorem that a chordal graph is Cohen-Macaulay if and only if its edge ideal is unmixed. We also characterize the sequentially Cohen-Macaulay cycles and produce some examples of nonchordal sequentially Cohen-Macaulay graphs.
机构:
Hanoi Natl Univ Educ, Dept Math & Informat, 136 Xuan Thuy, Hanoi, VietnamHanoi Natl Univ Educ, Dept Math & Informat, 136 Xuan Thuy, Hanoi, Vietnam
Diem, Ly Thi Kieu
Minh, Nguyen Cong
论文数: 0引用数: 0
h-index: 0
机构:
Hanoi Univ Sci & Technol, Fac Math & Informat, 1 Dai Co Viet, Hanoi, VietnamHanoi Natl Univ Educ, Dept Math & Informat, 136 Xuan Thuy, Hanoi, Vietnam
机构:
Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
Bolognini, Davide
Macchia, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Free Univ Berlin, Fachbereich Math & Informat, Arnimallee 2, D-14195 Berlin, GermanyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
Macchia, Antonio
Strazzanti, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy