Relative volume comparison with integral curvature bounds

被引:123
作者
Petersen, P [1 ]
Wei, G
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s000390050036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we shall generalize the Bishop-Gromov relative volume comparison estimate to a situation where one only has an integral bound for the part of the Ricci curvature which lies below a given number. This will yield several compactness and pinching theorems.
引用
收藏
页码:1031 / 1045
页数:15
相关论文
共 6 条
  • [1] CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS
    ANDERSON, MT
    [J]. INVENTIONES MATHEMATICAE, 1990, 102 (02) : 429 - 445
  • [2] Anderson MT., 1991, Geom. Funct. Anal, V1, P231, DOI [DOI 10.1007/BF01896203, 10.1007/BF01896203]
  • [3] SPECTRAL GEOMETRY IN DIMENSION-3
    BROOKS, R
    PERRY, P
    PETERSEN, P
    [J]. ACTA MATHEMATICA, 1994, 173 (02) : 283 - 305
  • [4] GALLOT S, 1988, ASTERISQUE, P191
  • [5] Petersen P., 1997, MATH SCI RES I PUBL, V30, P167, DOI DOI 10.2977/PRIMS/1195166127.MR1452874
  • [6] YANG D, 1992, ANN SCI ECOLE NORM S, V25, P77