State Following (StaF) Kernel Functions for Function Approximation Part II: Adaptive Dynamic Programming

被引:0
作者
Kamalapurkar, Rushikesh [1 ]
Rosenfeld, Joel A. [1 ]
Dixon, Warren E. [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL USA
来源
2015 AMERICAN CONTROL CONFERENCE (ACC) | 2015年
基金
美国国家科学基金会;
关键词
CONTINUOUS-TIME;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An infinite horizon optimal regulation problem is solved online for a deterministic control-affine nonlinear dynamical system using a state following (StaF) kernel method to approximate the value function. Unlike traditional methods that aim to approximate a function over a large compact set, the StaF kernel method aims to approximate a function in a small neighborhood of a state that travels within a compact set. Simulation results demonstrate that stability and approximate optimality of the control system can be achieved with significantly fewer basis functions than may be required for global approximation methods.
引用
收藏
页码:521 / 526
页数:6
相关论文
共 21 条
[1]   Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof [J].
Al-Tamimi, Asma ;
Lewis, Frank .
2007 IEEE INTERNATIONAL SYMPOSIUM ON APPROXIMATE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING, 2007, :38-+
[2]   A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems [J].
Bhasin, S. ;
Kamalapurkar, R. ;
Johnson, M. ;
Vamvoudakis, K. G. ;
Lewis, F. L. ;
Dixon, W. E. .
AUTOMATICA, 2013, 49 (01) :82-92
[3]   Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence [J].
Dierks, Travis ;
Thumati, Balaje T. ;
Jagannathan, S. .
NEURAL NETWORKS, 2009, 22 (5-6) :851-860
[4]   Reinforcement learning in continuous time and space [J].
Doya, K .
NEURAL COMPUTATION, 2000, 12 (01) :219-245
[5]   Concurrent learning-based approximate feedback-Nash equilibrium solution of N-player nonzero-sum differential games [J].
Kamalapurkar, Rushikesh ;
Klotz, Justin R. ;
Dixon, Warren E. .
IEEE/CAA Journal of Automatica Sinica, 2014, 1 (03) :239-247
[6]  
Kamalapurkar R, 2013, IEEE DECIS CONTR P, P6256, DOI 10.1109/CDC.2013.6760878
[7]  
Khalil H. K, 2002, Nonlinear Systems, V3rd
[8]  
Kirk D.E., 2004, OPTIMAL CONTROL THEO
[9]   Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control [J].
Lewis, Frank L. ;
Vrabie, Draguna .
IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2009, 9 (03) :32-50
[10]  
Liberzon D., 2012, Calculus of Variations and Optimal Control Theory: A Concise Introduction