Discrete semipositone higher-order equations

被引:8
作者
Agarwal, RP [1 ]
Grace, SR
O'Regan, D
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Cairo Univ, Dept Engn Math, Giza 12221, Egypt
[3] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
semipositone; (n; p) and conjugate; Krasnoselskii's fixed-point theorem; existence theory;
D O I
10.1016/S0898-1221(03)00079-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes existence for semipositone (n, p) and conjugate discrete boundary value problems. Our analysis relies on Krasnoselskii's fixed-point theorem in a cone. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1171 / 1179
页数:9
相关论文
共 7 条
[1]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[2]   Nonpositone discrete boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (02) :207-215
[3]   Singular discrete (n,p) boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
APPLIED MATHEMATICS LETTERS, 1999, 12 (08) :113-119
[4]   Discrete conjugate boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
APPLIED MATHEMATICS LETTERS, 2000, 13 (02) :97-104
[5]   A generalization of concavity for finite differences [J].
Eloe, PW .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (10-12) :109-113
[6]  
HARTMAN P, 1978, T AM MATH SOC, V246, P1
[7]  
Lasota A., 1968, Ann. Pol. Math, V20, P183, DOI [10.4064/ap-20-2-183-190, DOI 10.4064/AP-20-2-183-190]