In this paper, anH1 estimation approach is given for an array of coupled stochastic complex networks with intermittent nonlinearity switching. A set of binary random variables are adopted to characterize the intermittent switching behavior of the involved nonlinearities. To effectively alleviate data collisions and save energy, the Round-Robin protocol is utilized to curb network congestions in data communication. For the coupled stochastic complex networks, we design a protocol-based H-infinity estimator that not only resists stochastic disturbances, but also ensures the exponential mean square stability of the desired error system under a given disturbance attenuation level. With the help of the Lyapunov stability and convex optimization theories, sufficient conditions are provided for the expected estimator. Simulations are provided to illustrate the reasonability of ourH(infinity) approach.
机构:
Anhui Univ Technol, AnHui Prov Key Lab Special Heavy Load Robot, Maanshan 243032, Peoples R China
East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaAnhui Univ Technol, AnHui Prov Key Lab Special Heavy Load Robot, Maanshan 243032, Peoples R China
Shen, Hao
Song, Yinsheng
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243032, Peoples R ChinaAnhui Univ Technol, AnHui Prov Key Lab Special Heavy Load Robot, Maanshan 243032, Peoples R China
Song, Yinsheng
Wang, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243032, Peoples R China
East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R ChinaAnhui Univ Technol, AnHui Prov Key Lab Special Heavy Load Robot, Maanshan 243032, Peoples R China
Wang, Jing
Park, Ju H.
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Dept Elect Engn, Kyongsan 38541, South KoreaAnhui Univ Technol, AnHui Prov Key Lab Special Heavy Load Robot, Maanshan 243032, Peoples R China
Park, Ju H.
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING,
2023,
10
(02):
: 911
-
921