A random intersection digraph: Indegree and outdegree distributions

被引:9
作者
Bloznelis, Mindaugas [1 ]
机构
[1] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
关键词
Random intersection digraph; Degree distribution; Clustering; Random intersection graph; GRAPHS; VERTEX;
D O I
10.1016/j.disc.2010.06.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(1), ... , S(n), T(1) T(n), ... , T(n) be random subsets of the set [m] = {1, ... , m}. We consider the random digraph D on the vertex set [n] defined as follows: the arc i -> j is present in D whenever S(i) boolean AND T(j) not equal empty set. Assuming that the pairs of sets (S(i), T(i)), 1 <= i <= n, are independent and identically distributed, we study the in- and outdegree distributions of a typical vertex of D as n, m -> infinity. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2560 / 2566
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 2002, P 9 ACM C COMPUT COM, DOI DOI 10.1145/586110.586117
[2]  
Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
[3]   CONNECTION DIGRAPHS AND 2ND-ORDER LINE DIGRAPHS [J].
BEINEKE, LW ;
ZAMFIRESCU, CM .
DISCRETE MATHEMATICS, 1982, 39 (03) :237-254
[4]   Connectivity of the uniform random intersection graph [J].
Blackburn, Simon R. ;
Gerke, Stefanie .
DISCRETE MATHEMATICS, 2009, 309 (16) :5130-5140
[5]   Degree distribution of a typical, vertex in a general random intersection graph [J].
Bloznelis, M. .
LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (01) :38-45
[6]  
Breiman L., 1968, PROBABILITY
[7]   RANDOM INTERSECTION GRAPHS WITH TUNABLE DEGREE DISTRIBUTION AND CLUSTERING [J].
Deijfen, Maria ;
Kets, Willemien .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2009, 23 (04) :661-674
[8]  
Fill JA, 2000, RANDOM STRUCT ALGOR, V16, P156, DOI 10.1002/(SICI)1098-2418(200003)16:2<156::AID-RSA3>3.0.CO
[9]  
2-H
[10]  
Godehardt E, 2003, STUD CLASS DATA ANAL, P67