A tight upper bound on Kolmogorov complexity and uniformly optimal prediction

被引:48
作者
Staiger, L [1 ]
机构
[1] Univ Halle Wittenberg, Inst Informat, D-06120 Halle, Germany
关键词
D O I
10.1007/s002240000086
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper links the concepts of Kolmogorov complexity (in complexity theory) and Hausdorff dimension (in fractal geometry) for a class of recursive (computable) omega-languages. It is shown that the complexity of an infinite string contained in a Sigma(2)-definable set of strings is upper bounded by the Hausdorff dimension of this set and that this upper bound is tight. Moreover, we show that there are computable gambling strategies guaranteeing a uniform prediction quality arbitrarily close to the optimal one estimated by Hausdorff dimension and Kolmogorov complexity provided the gambler's adversary plays according to a sequence chosen from a Sigma(2)-definable set of strings. We provide also examples which give evidence that our results do not extend further in the arithmetical hierarchy.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1990, FRACTAL GEOMETRY
[2]  
Brudno A. A., 1983, T MOSCOW MATH SOC, V44, P127
[3]   ON HAUSDORFF AND TOPOLOGICAL DIMENSIONS OF THE KOLMOGOROV COMPLEXITY OF THE REAL LINE [J].
CAI, JY ;
HARTMANIS, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 49 (03) :605-619
[4]  
CALUDE C, 1994, INFORMATION RANDOMNE
[5]  
CHAITIN GJ, 1987, INFORMATION RANDOMNE
[6]  
Li M., 2019, INTRO KOLMOGOROV COM, DOI [10.1007/978-3-030-11298-1, DOI 10.1007/978-3-030-11298-1]
[7]  
Ryabko B. Ya., 1994, Journal of Complexity, V10, P281, DOI 10.1006/jcom.1994.1015
[8]  
Ryabko B. Ya., 1986, Problems of Information Transmission, V22, P170
[9]  
RYABKO BY, 1993, PROBL PEREDACHI INF, V29, P96
[10]   COMBINATORIAL PROPERTIES OF THE HAUSDORFF DIMENSION [J].
STAIGER, L .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 23 (01) :95-100