Fractional Brownian motion satisfies two-way crossing

被引:6
作者
Peyre, Remi [1 ]
机构
[1] Inst Elie Cartan Lorraine, Campus Aiguillettes,BP 70239, F-54506 Vandoeuvre Les Nancy, France
关键词
fractional Brownian motion; law of the iterated logarithm; stopping time; two-way crossing; TRANSACTION COSTS; ARBITRAGE;
D O I
10.3150/16-BEJ858
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the following result: For (Z(t))t is an element of R a fractional Brownian motion with arbitrary Hurst parameter, for any stopping timer, there exist arbitrarily small epsilon > 0 such that Zeta(tau+epsilon) < Z(tau), with asymptotic behaviour when epsilon SE arrow 0 satisfying a bound of iterated logarithm type. As a consequence, fractional Brownian motion satisfies the "two-way crossing" property, which has important applications in financial mathematics.
引用
收藏
页码:3571 / 3597
页数:27
相关论文
共 12 条
[1]   On the law of the iterated logarithm for Gaussian processes [J].
Arcones, MA .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (04) :877-903
[2]   SIMPLE ARBITRAGE [J].
Bender, Christian .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (05) :2067-2085
[3]   Arbitrage in fractional Brownian motion models [J].
Cheridito, P .
FINANCE AND STOCHASTICS, 2003, 7 (04) :533-553
[4]  
Czichowsky C., 2016, SHADOW PRIC IN PRESS
[5]  
Czichowsky C., 2015, ARXIV150502416
[6]   A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING [J].
DELBAEN, F ;
SCHACHERMAYER, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :463-520
[7]   Consistent price systems and face-lifting pricing under transaction costs [J].
Guasoni, Paolo ;
Rasonyi, Mikloz ;
Schachermayer, Walter .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (02) :491-520
[8]   No arbitrage under transaction costs, with fractional brownian motion and beyond [J].
Guasoni, Paolo .
MATHEMATICAL FINANCE, 2006, 16 (03) :569-582
[9]   VARIATION OF SOME OTHER SPECULATIVE PRICES [J].
MANDELBROT, B .
JOURNAL OF BUSINESS, 1967, 40 (04) :393-413
[10]  
Nourdin I., 2012, BOCCONI SPRINGER SER, V4