Spectrum of the product of independent random Gaussian matrices

被引:86
作者
Burda, Z. [1 ]
Janik, R. A. [1 ]
Waclaw, B. [2 ]
机构
[1] Jagellonian Univ, Marian Smoluchowski Inst Phys, PL-30059 Krakow, Poland
[2] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
STATISTICAL THEORY; ENERGY LEVELS; CHAOTIC SCATTERING; ENSEMBLES; SUPERSYMMETRY; EIGENVALUES; DENSITY;
D O I
10.1103/PhysRevE.81.041132
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the eigenvalue density of a product X=X1X2 ... X-M of M independent N x N Gaussian random matrices in the limit N > infinity is rotationally symmetric in the complex plane and is given by a simple expression rho(z, (z) over bar) = 1/M pi(sigma-2/M) vertical bar z vertical bar(-2+(2/M)) for vertical bar z vertical bar <= sigma, and is zero for vertical bar z vertical bar > sigma. The parameter sigma corresponds to the radius of the circular support and is related to the amplitude of the Gaussian fluctuations. This form of the eigenvalue density is highly universal. It is identical for products of Gaussian Hermitian, non-Hermitian, and real or complex random matrices. It does not change even if the matrices in the product are taken from different Gaussian ensembles. We present a self-contained derivation of this result using a planar diagrammatic technique. Additionally, we conjecture that this distribution also holds for any matrices whose elements are independent centered random variables with a finite variance or even more generally for matrices which fulfill Pastur-Lindeberg's condition. We provide a numerical evidence supporting this conjecture.
引用
收藏
页数:12
相关论文
共 38 条
[1]   The complex Laguerre symplectic ensemble of non-Hermitian matrices [J].
Akemann, G .
NUCLEAR PHYSICS B, 2005, 730 (03) :253-299
[2]   The chiral Gaussian two-matrix ensemble of real asymmetric matrices [J].
Akemann, G. ;
Phillips, M. J. ;
Sommers, H-J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (08)
[3]   Integrable structure of Ginibre's ensemble of real random matrices and a Pfaffian integration theorem [J].
Akemann, Gernot ;
Kanzieper, Eugene .
JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (5-6) :1159-1231
[4]  
[Anonymous], HDB RANDOM IN PRESS
[5]  
[Anonymous], 1992, American Mathematical Soc.
[6]   Random matrix ensembles of time-lagged correlation matrices: derivation of eigenvalue spectra and analysis of financial time-series [J].
Biely, Christoly ;
Thurner, Stefan .
QUANTITATIVE FINANCE, 2008, 8 (07) :705-722
[7]  
BOUCHAUD JP, HDB RANDOM IN PRESS
[8]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[9]   Signal and noise in correlation matrix [J].
Burda, Z ;
Görlich, A ;
Jarosz, A ;
Jurkiewicz, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 343 :295-310