Physics Operations With the DIII-D Plasma Control System

被引:5
作者
Hyatt, A. W. [1 ]
Ferron, J. R. [1 ]
Humphreys, D. A. [1 ]
Chamberlain, F. R. [1 ]
Johnson, R. D. [1 ]
Penaflor, B. G. [1 ]
Piglowski, D. A. [1 ]
Scoville, J. T. [1 ]
Walker, M. L. [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
关键词
Control; operations; plasma; tokamak; D TOKAMAK;
D O I
10.1109/TPS.2009.2039584
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The DIII-D device began operation in 1986, and a fully digital plasma control system (PCS) was implemented in 1993. Over time, the success of the PCS to exploit the inherent versatility of the DIII-D device led to a philosophy of using the PCS to control all available plasma system actuators. This made the PCS a very powerful physics tool that is at the core of Physics Operations at DIII-D. The complexity of the DIII-D device and all the systems the PCS must control makes the proper setup of the PCS for new experiments a daunting task. A cadre of physicists specially trained in PCS operation forms the bulk of the Physics Operations staff at DIII-D. They are the interface between experimental plans and successful execution and, as such, are a critical component of each experiment. Physics Operations is also a set of tools and procedures. We will briefly examine some of those tools, such as the TokSys control design and modeling environment and the "smart" PCS setup checklist, that greatly reduce human error in reconfiguring the PCS for a new experiment. We will examine the procedures that allow efficient use of those tools and some of the human factors that can affect productivity.
引用
收藏
页码:434 / 440
页数:7
相关论文
共 50 条
[41]   Relationship between locked modes and thermal quenches in DIII-D [J].
Sweeney, R. ;
Choi, W. ;
Austin, M. ;
Brookman, M. ;
Izzo, V. ;
Knolker, M. ;
La Haye, R. J. ;
Leonard, A. ;
Strait, E. ;
Volpe, F. A. .
NUCLEAR FUSION, 2018, 58 (05)
[42]   Three-dimensional equilibrium reconstruction on the DIII-D device [J].
Lazerson, S. A. .
NUCLEAR FUSION, 2015, 55 (02)
[43]   Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal [J].
Holod, I. ;
Lin, Z. ;
Taimourzadeh, S. ;
Nazikian, R. ;
Spong, D. ;
Wingen, A. .
NUCLEAR FUSION, 2017, 57 (01)
[44]   Current profile measurement on the DIII-D tokamak [J].
Jayakumar, RJ ;
Allen, SL ;
Burrell, KH ;
Lao, LL ;
Makowski, MA ;
Petty, CC ;
Thomas, DM .
FUSION SCIENCE AND TECHNOLOGY, 2005, 48 (02) :852-863
[45]   Recent and future upgrades to the DIII-D tokamak [J].
Scoville, J. T. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) :651-654
[46]   Experimental imaging of separatrix splitting on DIII-D [J].
Shafer, M. W. ;
Unterberg, E. A. ;
Orlov, D. M. ;
Evans, T. E. ;
Harris, J. H. ;
Hillis, D. L. ;
Maingi, R. ;
Moyer, R. A. ;
Nazikian, R. ;
Wingen, A. .
NUCLEAR FUSION, 2012, 52 (12)
[47]   Improved langmuir probe array for DIII-D [J].
Taussig, D. A. ;
Watkins, J. G. ;
Boivin, R. L. .
22ND IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2007, :342-+
[48]   Transport of tungsten to collector probes in DIII-D [J].
Zamperini, S. ;
Donovan, D. ;
Unterberg, E. ;
Stangeby, P. ;
Nichols, J. ;
Duran, J. ;
Elder, D. ;
Neff, A. ;
Rudakov, D. ;
Zach, M. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :87-92
[49]   Progress toward an advanced tokamak at DIII-D [J].
Kellman, AG .
FUSION ENGINEERING AND DESIGN, 2001, 56-57 :801-805
[50]   Overview of the DIII-D fusion science program [J].
Luxon, JL ;
Simonen, TC ;
Stambaugh, RD .
FUSION SCIENCE AND TECHNOLOGY, 2005, 48 (02) :807-827