A new minimum storage Runge-Kutta scheme for computational acoustics

被引:42
作者
Calvo, M [1 ]
Franco, JM [1 ]
Rández, L [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50009, Spain
关键词
time advancing methods; low storage RK schemes; dissipation and dispersion;
D O I
10.1016/j.jcp.2004.05.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new fourth-order six-stage Runge-Kutta numerical integrator that requires 2N-storage (N is the number of degrees of freedom of the system) with low dissipation and dispersion and a relatively large stability interval is proposed. These features make it a suitable time advancing method for solving wave propagation problems in Computational Acoustics. Some numerical experiments are presented to show the favourable behaviour of the new scheme as compared with the LDD46 and LDD25 methods proposed by Staneseu and Habashi [J. Comput. Phys. 143 (1998) 674] and the standard fourth order Runge-Kutta method. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 13 条
[1]   An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation and related periodic initial-value problems [J].
Avdelas, G ;
Simos, TE ;
Vigo-Aguiar, J .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 131 (1-2) :52-67
[2]   Minimum storage Runge-Kutta schemes for computational acoustics [J].
Calvo, M ;
Franco, JM ;
Rández, L .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) :535-545
[3]   Explicit Runge-Kutta methods for initial value problems with oscillating solutions [J].
Calvo, M ;
Franco, JM ;
Montijano, JI ;
Randez, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 76 (1-2) :195-212
[4]  
CARPENTER MH, 1994, TM109112 NASA
[5]   AN EASILY IMPLEMENTABLE 4TH-ORDER METHOD FOR THE TIME INTEGRATION OF WAVE PROBLEMS [J].
DEFRUTOS, J ;
SANZSERNA, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (01) :160-168
[6]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[7]   Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics [J].
Hu, FQ ;
Hussaini, MY ;
Manthey, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (01) :177-191
[8]  
KENNEDY CA, 1999, NASACR1999209349
[9]   Optimal Runge-Kutta methods for first order pseudospectral operators [J].
Mead, JL ;
Renaut, RA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (01) :404-419
[10]   An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions [J].
Simos, TE .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 115 (01) :1-8