Benchmarking CMA-ES with Margin on the bbob-mixint Testbed

被引:3
作者
Hamano, Ryoki [1 ]
Saito, Shota [1 ,2 ]
Nomura, Masahiro [3 ]
Shirakawa, Shinichi [1 ]
机构
[1] Yokohama Natl Univ, Yokohama, Kanagawa, Japan
[2] SkillUp AI Co Ltd, Yokohama, Kanagawa, Japan
[3] CyberAgent, Shibuya Ku, Tokyo, Japan
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022 | 2022年
关键词
Benchmarking; Black-box optimization; Mixed-integer optimization; covariance matrix adaptation evolution strategy; EVOLUTION STRATEGY;
D O I
10.1145/3520304.3534043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The CMA-ES with Margin (CMA-ESwM) is a CMA-ES variant recently proposed for mixed-integer black-box optimization (MI-BBO), which introduces a lower bound on the marginal probability associated with integer variables. The CMA-ESwM shows promising performance compared to existing methods on simple benchmark functions. However, its performance has not been comprehensively investigated in other function classes, such as multimodal ones. In this work, we investigate the performance of the CMA-ESwM on the bbob-mixint testbed that includes problems of various properties for MI-BBO. The experimental results show that the CMA-ESwM outperforms the other MI-BBO methods at higher dimensions. The performance at low dimensions is competitive with the comparative methods.
引用
收藏
页码:1708 / 1716
页数:9
相关论文
共 15 条
  • [1] Auger A, 2005, IEEE C EVOL COMPUTAT, P1769
  • [2] Bergstra J., 2011, P 2011 ANN C NEURAL, V24, DOI DOI 10.5555/2986459.2986743
  • [3] CMA-ES with Margin: Lower-Bounding Marginal Probability for Mixed-Integer Black-Box Optimization
    Hamano, Ryoki
    Saito, Shota
    Nomura, Masahiro
    Shirakawa, Shinichi
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 639 - 647
  • [4] Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation
    Hansen, M
    Ostermeier, A
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 312 - 317
  • [5] Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
    Hansen, N
    Muller, SD
    Koumoutsakos, P
    [J]. EVOLUTIONARY COMPUTATION, 2003, 11 (01) : 1 - 18
  • [6] Hansen N., 2011, Research Report RR-7751
  • [7] Hansen N., 2009, P 11 ANN C COMP GEN, P2389, DOI [DOI 10.1145/1570256.1570333, 10.1145/ 1570256.1570333]
  • [8] Hansen N, 2016, Arxiv, DOI arXiv:1603.08776
  • [9] Hansen N, 2016, Arxiv, DOI arXiv:1605.03560
  • [10] COCO: a platform for comparing continuous optimizers in a black-box setting
    Hansen, Nikolaus
    Auger, Anne
    Ros, Raymond
    Mersmann, Olaf
    Tusar, Tea
    Brockhoff, Dimo
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (01) : 114 - 144