Christolea crassifolia HARDY gene enhances drought stress tolerance in transgenic tomato plants

被引:7
|
作者
Guo, Xinyong [1 ]
Zhang, Li [1 ]
Zhu, Jianbo [1 ]
Wang, Aiying [1 ]
Liu, Hongling [1 ]
机构
[1] Shihezi Univ, Coll Life Sci, Key Lab Agr Biotechnol, Shihezi 832003, Peoples R China
关键词
Christolea crassifolia; CcHRD; Drought stress; Tolerance; Tomato; TRANSCRIPTION-FACTOR; SALT TOLERANCE; REGULATORY NETWORKS; APETALA2-LIKE GENE; LOW-TEMPERATURE; OSMOTIC-STRESS; WATER-STRESS; ARABIDOPSIS; OVEREXPRESSION; EXPRESSION;
D O I
10.1007/s11240-017-1192-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Christolea crassifolia HARDY: gene (CcHRD) belongs to the AP2/ERF-like tanscritpion factor family, and overexpression of HRD gene has been proved to result in improved water use efficiency and enhanced drought resistance in multiple plant species. In the present study, we cloned the CcHRD gene from Christolea crassifolia, which shares 99.1% sequence similarity with the HRD gene from Arabidopsis thaliana. We generated transgenic tomato plants expressing CcHRD gene by agrobacterium-mediated genetic transformation. Our results revealed that the transgenic tomato plants showed a more developed root system and higher fruit yield than the wild-type plants. Furthermore, the leaf relative water content, chlorophyll content and Fv/Fm value in transgenic plants were significantly higher than the wild type, while the relative conductivity and MDA content of transgenic plant leaves were markedly lower than those of wild type under drought stress. We also observed that the major agronomic traits of transgenic tomato plants were improved under natural drought stress compared with those of the wild type. In summary, results in this transgenic study showed that the CcHRD gene could enhance the drought resistance in tomato, and also provided important information for the application of drought-responsive genes in improving crop plant resistance to abiotic stresses.
引用
收藏
页码:469 / 481
页数:13
相关论文
共 50 条
  • [1] Christolea crassifolia HARDY gene enhances drought stress tolerance in transgenic tomato plants
    Xinyong Guo
    Li Zhang
    Jianbo Zhu
    Aiying Wang
    Hongling Liu
    Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 129 : 469 - 481
  • [2] SlCOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco
    Ma, Xiaocui
    Wang, Guodong
    Zhao, Weiyang
    Yang, Minmin
    Ma, Nana
    Kong, Fanying
    Dong, Xinchun
    Meng, Qingwei
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 216 : 88 - 99
  • [3] Expression of Arabidopsis HOMEODOMAIN GLABROUS 11 Enhances Tolerance to Drought Stress in Transgenic Sweet Potato Plants
    Ruan, Long
    Chen, Lijuan
    Chen, Yihong
    He, Jinling
    Zhang, Wei
    Gao, Zhengliang
    Zhang, Yunhua
    JOURNAL OF PLANT BIOLOGY, 2012, 55 (02) : 151 - 158
  • [4] The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants
    van Beek, Coenraad R.
    Guzha, Tapiwa
    Kopana, Nolusindiso
    van der Westhuizen, Cornelius S.
    Panda, Sanjib K.
    van der Vyver, Christell
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2021, 27 (05) : 907 - 921
  • [5] Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses
    Pang, Xinyue
    Xue, Min
    Ren, Meiyan
    Nan, Dina
    Wu, Yaqi
    Guo, Huiqin
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 624 - 634
  • [6] The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants
    Coenraad R. van Beek
    Tapiwa Guzha
    Nolusindiso Kopana
    Cornelius S. van der Westhuizen
    Sanjib K. Panda
    Christell van der Vyver
    Physiology and Molecular Biology of Plants, 2021, 27 : 907 - 921
  • [7] The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis
    Wang, Feibing
    Zhu, Hong
    Kong, Weili
    Peng, Rihe
    Liu, Qingchang
    Yao, Quanhong
    PLANTA, 2016, 244 (01) : 59 - 73
  • [8] Overexpression of Potato PYL16 Gene in Tobacco Enhances the Transgenic Plant Tolerance to Drought Stress
    Yao, Panfeng
    Zhang, Chunli
    Bi, Zhenzhen
    Liu, Yuhui
    Liu, Zhen
    Wei, Jia
    Su, Xinglong
    Bai, Jiangping
    Cui, Junmei
    Sun, Chao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [9] Tomato SlDREB1 gene conferred the transcriptional activation of drought-induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress
    Jiang, Linlin
    Wang, Yingbo
    Zhang, Shuhui
    He, Rui
    Li, Wei
    Han, Jiao
    Cheng, Xianguo
    PLANT GROWTH REGULATION, 2017, 81 (01) : 131 - 145
  • [10] Plasma membrane intrinsic protein SlPIP1;7 promotes root growth and enhances drought stress tolerance in transgenic tomato (Solanum lycopersicum) plants
    Fan, Shuya
    Han, Nani
    Wu, Hong
    Jia, Jianhua
    Guo, Jia
    PLANT BREEDING, 2021, 140 (06) : 1102 - 1114