Neural network identification of a nonlinear circuit model of hysteresis

被引:17
作者
Cincotti, S
Daneri, I
机构
[1] Univ Cagliari, Dipartimento Ingn Elettr & Elettron, I-09123 Cagliari, Italy
[2] Univ Genoa, Dipartimento Ingn Biofis & Elettron, I-16145 Genoa, Italy
关键词
nonlinear network analysis; neural networks;
D O I
10.1049/el:19970748
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A nonlinear circuit model of hysteretic phenomena is presented. The model provides a close prediction of static hysteresis and exhibits realistic dynamic features. The parameters of the circuit model can be identified by proper neural network training. Basic features and results are discussed.
引用
收藏
页码:1154 / 1156
页数:3
相关论文
共 9 条
[1]   A POSSIBLE ALTERNATIVE TO PREISACHS MODEL OF STATIC HYSTERESIS [J].
BOBBIO, S ;
MARRUCCI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1993, 15 (05) :723-733
[2]   LUMPED-CIRCUIT MODELS FOR NONLINEAR INDUCTORS EXHIBITING HYSTERESIS LOOPS [J].
CHUA, LO ;
STROMSMOE, KA .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1970, CT17 (04) :564-+
[3]   Neural network modelling of variable hysteretic inductors [J].
Cincotti, S ;
Marchesi, M ;
Serri, A .
ELECTRONICS LETTERS, 1996, 32 (12) :1054-1055
[4]   FERROMAGNETIC HYSTERESIS [J].
JILES, DC ;
ATHERTON, DL .
IEEE TRANSACTIONS ON MAGNETICS, 1983, 19 (05) :2183-2185
[5]  
*MATHW INC, 1994, NEUR NETW TOOLB US G
[6]  
Mayergoyz I. D, 1991, MATH MODELS HYSTERES
[7]  
Parodi M, 1996, INT J CIRC THEOR APP, V24, P183, DOI 10.1002/(SICI)1097-007X(199603/04)24:2<183::AID-CTA893>3.0.CO
[8]  
2-F
[9]  
RASHID MH, SPICE CIRCUITS ELECT, P90