Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions

被引:0
作者
Kalsoom, Humaira [1 ]
Hussain, Sabir [2 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Engn & Technol, Dept Math, Lahore, Pakistan
来源
PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS | 2019年 / 51卷 / 10期
关键词
Hermite-Hadamard type inequality; s-logarithmically convex functions; Holder's inequality; FEJER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors have tried to prove some new results of Hermite-Hadamard type integral inequality for n-times differentiable s-logarithmically convex functions and as a consequences the authors have concluded some well-known inequalities for such type of the functions.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 38 条
  • [1] Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality
    Abdeljawad, Thabet
    Al-Mdallal, Qasem M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 218 - 230
  • [2] Fractional differential equations for the generalized Mittag-Leffler function
    Agarwal, Praveen
    Al-Mdallal, Qasem
    Cho, Yeol Je
    Jain, Shilpi
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [3] On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems
    Al-Mdallal, Qasem M.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 261 - 267
  • [4] Fractional-order Legendre-collocation method for solving fractional initial value problems
    Al-Mdallal, Qasem M.
    Abu Omer, Ahmed S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 : 74 - 84
  • [5] [Anonymous], INT J OPEN PROBLEMS
  • [6] [Anonymous], APPL MATH
  • [7] [Anonymous], APPL MATH INF SCI
  • [8] [Anonymous], 2013, ANALYSIS-UK, DOI DOI 10.1524/ANLY.2013.1192
  • [9] [Anonymous], ACTA MATH SCI
  • [10] [Anonymous], 2012, ABSTR APPL AN