Microwave N2-Ar plasmas applied for N-graphene post synthesis

被引:10
作者
Bundaleska, N. [1 ]
Bundaleski, N. [2 ,3 ]
Dias, A. [1 ]
Dias, F. M. [1 ]
Abrashev, M. [4 ]
Filipic, G. [5 ]
Cvelbar, U. [5 ]
Rakocevic, Z. [3 ]
Kissovski, Zh [4 ]
Henriques, J. [1 ]
Tatarova, E. [1 ]
机构
[1] Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, P-2829516 Lisbon, Portugal
[3] Univ Belgrade, Vinca Inst Nucl Sci, POB 522, Belgrade 11001, Serbia
[4] Univ Sofia, Fac Phys, Sofia 1164, Bulgaria
[5] Jozef Stefan Inst, Dept Surface Engn & Optoelect F4, Ljubljana, Slovenia
关键词
N-graphene; microwave plasma; carbon nitrides; post synthesis; NITROGEN-DOPED GRAPHENE; GRAPHITIC CARBON NITRIDE; REDUCTION; SYSTEMS; RAMAN;
D O I
10.1088/2053-1591/aad7e9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High level of nitrogen doping (similar to 25%) of free-standing graphene sheets was achieved using the remote region of a Ar-N-2 microwave plasmas. The relation between the percentage of nitrogen in the plasma and the characteristics of the treated samples has been investigated. Structural changes, being mainly created at the surface of graphene, increase significantly with the percentage of nitrogen in the gas mixture. For a mixture containing 5% of N-2 about 2.7 at.% of nitrogen was incorporated in the form of imide group and graphitic bonds (70%), and as N bound to sp3 carbon (30%). Increasing the nitrogen amount to 40% results in the production of samples with up to 25% of incorporated nitrogen. Formation of new types of carbon-nitride structures has also been observed. Detailed x-ray Photoelectron Spectroscopy and Transmission Electron Microscopy analysis support the hypothesis that a structure similar to beta-C3N4 has been synthesized.
引用
收藏
页数:13
相关论文
共 47 条
[1]  
[Anonymous], 1992, HIGH RESOLUTION XPS, DOI DOI 10.1002/ADMA.19930051035
[2]   Nitrogen Doped Graphene Generated by Microwave Plasma and Reduction Expansion Synthesis [J].
Arias-Monje, Pedro J. ;
Menon, Sarath K. ;
Zea, Hugo ;
Osswald, Sebastian ;
Luhrs, Claudia C. .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2016, 8 (02) :120-128
[3]   Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy [J].
Bertoti, Imre ;
Mohai, Miklos ;
Laszlo, Krisztina .
CARBON, 2015, 84 :185-196
[4]   Valence band electronic structure of carbon nitride from x-ray photoelectron spectroscopy [J].
Chen, ZY ;
Zhao, JP ;
Yano, T ;
Ooie, T .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (01) :281-287
[5]   Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4 [J].
Dai, Yitao ;
Li, Chao ;
Shen, Yanbin ;
Lim, Tingbin ;
Xu, Jian ;
Li, Yongwang ;
Niemantsverdriet, Hans ;
Besenbacher, Flemming ;
Lock, Nina ;
Su, Ren .
NATURE COMMUNICATIONS, 2018, 9
[6]   Synthesis of graphitic carbon nitride by reaction of melamine and uric acid [J].
Dante, Roberto C. ;
Martin-Ramos, Pablo ;
Correa-Guimaraes, Adriana ;
Martin-Gil, Jesus .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (03) :1094-1102
[7]   Plasma engineering of graphene [J].
Dey, A. ;
Chroneos, A. ;
Braithwaite, N. St J. ;
Gandhiraman, Ram P. ;
Krishnamurthy, S. .
APPLIED PHYSICS REVIEWS, 2016, 3 (02)
[8]   Production of N-graphene by microwave N2-Ar plasma [J].
Dias, A. ;
Bundaleski, N. ;
Tatarova, E. ;
Dias, F. M. ;
Abrashev, M. ;
Cvelbar, U. ;
Teodoro, O. M. N. D. ;
Henriques, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (05)
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Modelling of large-scale microwave plasma sources [J].
Ferreira, C. M. ;
Tatarova, E. ;
Henriques, J. ;
Dias, F. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (19)