Adorym: a multi-platform generic X-ray image reconstruction framework based on automatic differentiation

被引:24
作者
Du, Ming [1 ]
Kandel, Saugat [2 ]
Deng, Junjing [1 ]
Huang, Xiaojing [3 ]
Demortiere, Arnaud [4 ]
Tuan Tu Nguyen [4 ]
Tucoulou, Remi [5 ]
De Andrade, Vincent [1 ]
Jin, Qiaoling [6 ,7 ]
Jacobsen, Chris [1 ,6 ,7 ]
机构
[1] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[2] Northwestern Univ, Appl Phys Program, Evanston, IL 60208 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source II, Upton, NY 11973 USA
[4] Univ Picardie Jules Verne, Lab Reactivite & Chim Solides LRCS, CNRS UMR 7314, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[5] European Synchrotron Radiat Facil, 71 Ave Martyrs, F-38000 Grenoble, France
[6] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[7] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
关键词
PHASE RETRIEVAL; ITERATIVE RECONSTRUCTION; ALGORITHM; PTYCHOGRAPHY; DIFFRACTION; TOMOGRAPHY; GRADIENT; PROPAGATION; SHRINKAGE; ERRORS;
D O I
10.1364/OE.418296
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe and demonstrate an optimization-based X-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts. It is written with strong support for parallel processing, allowing large datasets to be processed on high-performance computing systems. We demonstrate its use on several experimental datasets to show improved image quality through parameter refinement. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:10000 / 10035
页数:36
相关论文
共 105 条
[1]   Comparison of distributed memory algorithms for X-ray wave propagation in inhomogeneous media [J].
Ali, Sajid ;
Du, Ming ;
Adams, Mark F. ;
Smith, Barry ;
Jacobsen, Chris .
OPTICS EXPRESS, 2020, 28 (20) :29590-29618
[2]  
[Anonymous], 2017, ARXIV170202181
[3]  
[Anonymous], 2020, PyTorch documentations
[4]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[5]  
Behzad B., 2013, P 22 INT S HIGH PERF, P127, DOI DOI 10.1145/2462902.2462931
[6]   Efficient algorithms for the accurate propagation of extreme-resolution holograms [J].
Blinder, David ;
Shimobaba, Tomoyoshi .
OPTICS EXPRESS, 2019, 27 (21) :29905-29915
[7]  
Boyd S., 2010, FOUND TRENDS MACH LE, V3, P1, DOI DOI 10.1561/2200000016
[8]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[9]  
Chan H., 2020, PSYCHOL MED, DOI DOI 10.1017/S0033291719002137
[10]   The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities [J].
Chen, S. ;
Deng, J. ;
Yuan, Y. ;
Flachenecker, C. ;
Mak, R. ;
Hornberger, B. ;
Jin, Q. ;
Shu, D. ;
Lai, B. ;
Maser, J. ;
Roehrig, C. ;
Paunesku, T. ;
Gleber, S. C. ;
Vine, D. J. ;
Finney, L. ;
VonOsinski, J. ;
Bolbat, M. ;
Spink, I. ;
Chen, Z. ;
Steele, J. ;
Trapp, D. ;
Irwin, J. ;
Feser, M. ;
Snyder, E. ;
Brister, K. ;
Jacobsen, C. ;
Woloschak, G. ;
Vogt, S. .
JOURNAL OF SYNCHROTRON RADIATION, 2014, 21 :66-75