Characterization of membrane properties of inositol phosphorylceramide

被引:12
作者
Bjorkbom, Anders [1 ]
Ohvo-Rekila, Henna [1 ]
Kankaanpaa, Pasi [2 ]
Nyholm, Thomas K. M. [1 ]
Westerlund, Bodil [1 ]
Slotte, J. Peter [1 ]
机构
[1] Abo Akad Univ, Dept Biochem & Pharm, FI-20520 Turku, Finland
[2] Univ Turku, Dept Biochem & Food Chem, FI-20014 Turku, Finland
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2010年 / 1798卷 / 03期
基金
芬兰科学院;
关键词
Sphingolipid; Ordered domain; Calcium effect; Vesicle aggregation; Cholesterol; LIPID PHASE-TRANSITIONS; SACCHAROMYCES-CEREVISIAE; PHOSPHOLIPID-MEMBRANES; DEPOLARIZING ROTATIONS; YEAST SPHINGOLIPIDS; MASS-SPECTROMETRY; DOMAIN FORMATION; FUSION; CHOLESTEROL; PHOSPHATIDYLINOSITOL;
D O I
10.1016/j.bbamem.2009.11.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inositol phosphorylceramides (IPCs) are a class of anionic sphingolipids with a single inositol-phosphate head group coupled to ceramide. IPCs and more complex glycosylated IPCs have been identified in fungi, plants and protozoa but not in mammals. IPCs have also been identified in detergent resistant membranes in several organisms. Here we report on the membrane properties of the saturated N-palmitoyl-IPC (P-IPC) in one component bilayers as well as in complex bilayers together with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and cholesterol. The membrane properties of P-IPC were shown to be affected by calcium. According to anisotropy changes reported by DPH, the gel-to-liquid transition temperature (T-m) of P-IPC was 48 degrees C. Addition of 5 mM CaCl2 during vesicle preparation markedly increased the T-m (65 degrees C). According to fluorescence quenching experiments in complex lipid mixtures, P-IPC formed sterol containing domains in an otherwise fluid environment. The P-IPC containing domains melted at a lower temperature and appeared to contain less sterol as compared to domains containing N-palmitoyl-sphingomyelin. Calcium further reduced the sterol content of the ordered domains and also increased the thermal stability of the domains. Calcium also induced vesicle aggregation of unilamellar vesicles containing P-IPC, as was observed by 4D confocal microscopy and dynamic light scattering. We believe that IPCs and the calcium induced effects could be important in numerous membrane associated cellular processes such as membrane fusion and in membrane raft linked processes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 63 条