ALMA resolves the hourglass magnetic field in G31.41+0.31

被引:41
作者
Beltran, M. T. [1 ]
Padovani, M. [1 ]
Girart, J. M. [2 ,3 ]
Galli, D. [1 ]
Cesaroni, R. [1 ]
Paladino, R. [4 ]
Anglada, G. [5 ]
Estalella, R. [6 ]
Osorio, M. [5 ]
Rao, R. [7 ]
Sanchez-Monge, A. [8 ]
Zhang, Q. [9 ]
机构
[1] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[2] CSIC, ICE, Can Magrans S-N, Cerdanyola Del Valles 08193, Catalonia, Spain
[3] IEEC, Barcelona 08034, Catalonia, Spain
[4] INAF Ist Radioastron, Via P Gobetti 101, I-40129 Bologna, Italy
[5] CSIC, Inst Astrofis Andalucia, Glorieta Astron S-N, E-18008 Granada, Spain
[6] Univ Barcelona, IEEC, Inst Ciencies Cosmos, Dept Fis Quant & Astrofis, E-08028 Barcelona, Spain
[7] Acad Sinica, Inst Astron & Astrophys, 645 North Aohoku Pl, Hilo, HI 96720 USA
[8] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany
[9] Harvard & Smithsonian, Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
来源
ASTRONOMY & ASTROPHYSICS | 2019年 / 630卷
基金
欧盟地平线“2020”;
关键词
ISM: individual objects: G31.41+0.31; ISM: magnetic fields; stars: formation; techniques: interferometric; MOLECULAR CLOUD CORES; MASS STAR-FORMATION; AMBIPOLAR DIFFUSION; EMISSION; COLLAPSE; POLARIZATION; OUTFLOW; AMMONIA; BRAKING;
D O I
10.1051/0004-6361/201935701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Submillimeter Array (SMA) 870 mu m polarization observations of the hot molecular core G31.41+0.31 revealed one of the clearest examples up to date of an hourglass-shaped magnetic field morphology in a high-mass star-forming region. Aims. To better establish the role that the magnetic field plays in the collapse of G31.41+0.31, we carried out Atacama Large Millimeter/submillimeter Array (ALMA) observations of the polarized dust continuum emission at 1.3 mm with an angular resolution four times higher than that of the previous (sub)millimeter observations to achieve an unprecedented image of the magnetic field morphology. Methods. We used ALMA to perform full polarization observations at 233 GHz (Band 6). The resulting synthesized beam is 0 ''.x 0 ''.20 which, at the distance of the source, corresponds to a spatial resolution of similar to 875 au. Results. The observations resolve the structure of the magnetic field in G31.41+0.31 and allow us to study the field in detail. The polarized emission in the Main core of G31.41+0.41is successfully fit with a semi-analytical magnetostatic model of a toroid supported by magnetic fields. The best fit model suggests that the magnetic field is well represented by a poloidal field with a possible contribution of a toroidal component of similar to 10% of the poloidal component, oriented southeast to northwest at approximately -44 degrees and with an inclination of approximately -45 degrees. The magnetic field is oriented perpendicular to the northeast to southwest velocity gradient detected in this core on scales from 10(3) to 10(4) au. This supports the hypothesis that the velocity gradient is due to rotation of the core and suggests that such a rotation has little effect on the magnetic field. The strength of the magnetic field estimated in the central region of the core with the Davis-Chandrasekhar-Fermi method is similar to 8-13 mG and implies that the mass-to-flux ratio in this region is slightly supercritical. Conclusions. The magnetic field in G31.41+0.31 maintains an hourglass-shaped morphology down to scales of <1000 au. Despite the magnetic field being important in G31.41+0.31, it is not enough to prevent fragmentation and collapse of the core, as demonstrated by the presence of at least four sources embedded in the center of the core.
引用
收藏
页数:12
相关论文
共 74 条
  • [1] Magnetic field in a young circumbinary disk
    Alves, F. O.
    Girart, J. M.
    Padovani, M.
    Galli, D.
    Franco, G. A. P.
    Caselli, P.
    Vlemmings, W. H. T.
    Zhang, Q.
    Wiesemeyer, H.
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [2] Interstellar Dust Grain Alignment
    Andersson, B-G
    Lazarian, A.
    Vaillancourt, John E.
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 53, 2015, 53 : 501 - 539
  • [3] [Anonymous], 2017, ASTROPHYS J, DOI DOI 10.3847/2041-8213/AA7D4C
  • [4] Thermal methanol observations of the outflow from the G31.41+0.31 hot molecular core
    Araya, E.
    Hofner, P.
    Kurtz, S.
    Olmi, L.
    Linz, H.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 675 (01) : 420 - 426
  • [5] ALMA Observations of Polarized Emission toward the CW Tau and DG Tau Protoplanetary Disks: Constraints on Dust Grain Growth and Settling
    Bacciotti, Francesca
    Miquel Girart, Josep
    Padovani, Marco
    Podio, Linda
    Paladino, Rosita
    Testi, Leonardo
    Bianchi, Eleonora
    Galli, Daniele
    Codella, Claudio
    Coffey, Deirdre
    Favre, Cecile
    Fedele, Davide
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2018, 865 (02)
  • [6] MAGNETIC BRAKING, AMBIPOLAR DIFFUSION, AND THE FORMATION OF CLOUD CORES AND PROTOSTARS .1. AXISYMMETRICAL SOLUTIONS
    BASU, S
    MOUSCHOVIAS, TC
    [J]. ASTROPHYSICAL JOURNAL, 1994, 432 (02) : 720 - 741
  • [7] Accelerating infall and rotational spin-up in the hot molecular core G31.41+0.31
    Beltran, M. T.
    Cesaroni, R.
    Rivilla, V. M.
    Sanchez-Monge, A.
    Moscadelli, L.
    Ahmadi, A.
    Allen, V.
    Beuther, H.
    Etoka, S.
    Galli, D.
    Galvan-Madrid, R.
    Goddi, C.
    Johnston, K. G.
    Klaassen, P. D.
    Koelligan, A.
    Kuiper, R.
    Kumar, M. S. N.
    Maud, L. T.
    Mottram, J. C.
    Peters, T.
    Schilke, P.
    Testi, L.
    van der Tak, F.
    Walmsley, C. M.
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 615
  • [8] Beltran M. T, 2004, APJ, V601, pL190
  • [9] A detailed study of the rotating toroids in G31.41+0.31 and G24.78+0.08
    Beltrán, MT
    Cesaroni, R
    Neri, R
    Codella, C
    Furuya, RS
    Testi, L
    Olmi, L
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 435 (03) : 901 - 925
  • [10] LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths
    Brinch, C.
    Hogerheijde, M. R.
    [J]. ASTRONOMY & ASTROPHYSICS, 2010, 523