Statistical-dynamical downscaling of wind climatologies

被引:21
|
作者
Mengelkamp, HT [1 ]
Kapitza, H
Pfluger, U
机构
[1] GKSS Forschungszentrum Geesthacht GmbH, D-21494 Geesthacht, Germany
[2] German Weather Serv, D-63004 Offenbach, Germany
关键词
wind field simulation; downscaling; wind climate;
D O I
10.1016/S0167-6105(97)00093-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A statistical-dynamical downscaling procedure is applied for an investigation into the availability of wind power over a region of 80 x 87 km which covers flat and hilly terrain. The approach is based on the statistical coupling of a regionally representative wind climate with a numerical atmospheric mesoscale model. The large-scale wind climatology is calculated by a cluster-analysis of a time series of radiosonde data over 12 years. Any of the resulting 143 clusters represents a particular combination of geostrophic wind components and vertical temperature gradient. For each cluster, a highly resolved steady-state wind field is simulated with a non-hydrostatic mesoscale model. These wind fields are statistically evaluated by weighting them with the corresponding cluster frequency. The resulting three-dimensional wind field and the frequency distributions of windspeed and direction are compared with observations at synoptic stations.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 50 条
  • [1] Statistical-dynamical downscaling of wind roses over the Czech Republic
    Svoboda, Jaroslav
    Chladova, Zuzana
    Pop, Lukas
    Hosek, Jiri
    THEORETICAL AND APPLIED CLIMATOLOGY, 2013, 112 (3-4) : 713 - 722
  • [2] Statistical-dynamical downscaling of wind roses over the Czech Republic
    Jaroslav Svoboda
    Zuzana Chladova
    Lukas Pop
    Jiri Hosek
    Theoretical and Applied Climatology, 2013, 112 : 713 - 722
  • [3] On the application of Principal Component Analysis for accurate statistical-dynamical downscaling of wind fields
    Chavez-Arroyo, Roberto
    Lozano-Galiana, Sergio
    Sanz-Rodrigo, Javier
    Probst, Oliver
    EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2013, EGUDIVISION ENERGY, RESOURCES & THE ENVIRONMENT, ERE, 2013, 40 : 67 - 76
  • [4] Statistical-dynamical downscaling of wind fields using self-organizing maps
    Chavez-Arroyo, Roberto
    Lozano-Galiana, Sergio
    Sanz-Rodrigo, Javier
    Probst, Oliver
    APPLIED THERMAL ENGINEERING, 2015, 75 : 1201 - 1209
  • [5] Verification of statistical-dynamical downscaling in the Alpine region
    Fuentes, U
    Heimann, D
    CLIMATE RESEARCH, 1996, 7 (02) : 151 - 168
  • [6] A novel approach to statistical-dynamical downscaling for long-term wind resource predictions
    Chavez-Arroyo, Roberto
    Fernandes-Correia, Pedro
    Lozano-Galiana, Sergio
    Sanz-Rodrigo, Javier
    Amezcua, Javier
    Probst, Oliver
    METEOROLOGICAL APPLICATIONS, 2018, 25 (02) : 171 - 183
  • [7] A STATISTICAL-DYNAMICAL DOWNSCALING PROCEDURE FOR GLOBAL CLIMATE SIMULATIONS
    FREYBUNESS, F
    HEIMANN, D
    SAUSEN, R
    THEORETICAL AND APPLIED CLIMATOLOGY, 1995, 50 (3-4) : 117 - 131
  • [8] Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical-Dynamical Downscaling for Wind Energy Applications
    Badger, Jake
    Frank, Helmut
    Hahmann, Andrea N.
    Giebel, Gregor
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2014, 53 (08) : 1901 - 1919
  • [9] Statistical-dynamical downscaling of the urban heat island in Hamburg, Germany
    Hoffmann, Peter
    Schoetter, Robert
    Schluenzen, K. Heinke
    METEOROLOGISCHE ZEITSCHRIFT, 2018, 27 (02) : 89 - 109
  • [10] A new statistical-dynamical downscaling procedure for high-resolution time series and wind atlas generation
    Martinez, Yosvany
    Yu, Wei
    Lin, Hai
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 1329 - 1329