Indoor Actions Classification Through Long Short Term Memory Neural Networks

被引:5
|
作者
Cipolla, Emanuele [1 ]
Infantino, Ignazio [1 ]
Maniscalco, Umberto [1 ]
Pilato, Giovanni [1 ]
Vella, Filippo [1 ]
机构
[1] Natl Res Council Italy, ICAR, Via Ugo la Malfa 153, Palermo, Italy
来源
IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I | 2017年 / 10484卷
关键词
Deep learning; Human actions; LSTM; Indoor activities; AMBIENT INTELLIGENCE; ENVIRONMENT; BEHAVIOR;
D O I
10.1007/978-3-319-68560-1_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a system based on a recurrent deep neural network to classify actions performed in an indoor environment. RGBD and infrared sensors positioned in the rooms are used as data source. The smart environment the user lives in can be adapted to his/her needs.
引用
收藏
页码:435 / 444
页数:10
相关论文
共 50 条
  • [31] Wind Speed Forecasting Using Recurrent Neural Networks and Long Short Term Memory
    Ningsih, Fitriana R.
    Djamal, Esmeralda C.
    Najmurrakhman, Asep
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 137 - 141
  • [32] Using long short term memory and convolutional neural networks for driver drowsiness detection
    Quddus, Azhar
    Zandi, Ali Shahidi
    Prest, Laura
    Comeau, Felix J. E.
    ACCIDENT ANALYSIS AND PREVENTION, 2021, 156
  • [33] Long Short Term Memory on Chronic Laryngitis Classification
    Guedes, Vitor
    Junior, Arnaldo
    Fernandes, Joana
    Teixeira, Felipe
    Teixeira, Joao Paulo
    CENTERIS 2018 - INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / PROJMAN 2018 - INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / HCIST 2018 - INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERI, 2018, 138 : 250 - 257
  • [34] CONVOLUTIONAL LONG-SHORT TERM MEMORY NETWORKS MODEL FOR LONG DURATION EEG SIGNAL CLASSIFICATION
    Baloglu, Ulas Baran
    Yildirim, Ozal
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2019, 19 (01)
  • [35] A Comparative Review of Convolutional Neural Networks, Long Short-Term Memory, and Recurrent Neural Networks in Recommendation Systems
    Tyagi, Geetanjali
    Ray, Susmita
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 395 - 408
  • [36] End-to-end electroencephalogram (EEG) motor imagery classification with Long Short-Term Memory (LSTM) Neural Networks
    Leon-Urbano, Charles
    Ugarte, Willy
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2814 - 2820
  • [37] Classification of Caenorhabditis Elegans Locomotion Behaviors With Eigenfeature-Enhanced Long Short-Term Memory Networks
    Pham, Tuan D.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (01) : 206 - 216
  • [38] Potential of Bidirectional Long Short-Term Memory Networks for Crop Classification with Multitemporal Remote Sensing Images
    Kwak, Geun-Ho
    Park, Chan-Won
    Ahn, Ho-Yong
    Na, Sang-Il
    Lee, Kyung-Do
    Park, No-Wook
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (04) : 515 - 525
  • [39] A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction
    Pak, Unjin
    Kim, Chungsong
    Ryu, Unsok
    Sok, Kyongjin
    Pak, Sungnam
    AIR QUALITY ATMOSPHERE AND HEALTH, 2018, 11 (08): : 883 - 895
  • [40] A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction
    Unjin Pak
    Chungsong Kim
    Unsok Ryu
    Kyongjin Sok
    Sungnam Pak
    Air Quality, Atmosphere & Health, 2018, 11 : 883 - 895