Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering

被引:96
作者
Suarez-Gonzalez, Darilis [1 ]
Barnhart, Kara [2 ]
Saito, Eiji [3 ]
Vanderby, Ray, Jr. [1 ,2 ,4 ]
Hollister, Scott J. [3 ]
Murphy, William L. [1 ,2 ,5 ]
机构
[1] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53706 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Wisconsin, Dept Orthoped & Rehabil, Madison, WI 53706 USA
[5] Univ Wisconsin, Dept Pharmacol, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
tissue engineering; scaffold; biomineralization; COMPOSITE SCAFFOLDS; SURFACE-ROUGHNESS; IN-VITRO; PHOSPHATE; GROWTH; REGENERATION; APATITE; DEPOSITION; HYDROGELS; COATINGS;
D O I
10.1002/jbm.a.32833
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current bone tissue engineering strategies aim to grow a tissue similar to native bone by combining cells and biologically active molecules with a scaffold material. In this study, a macroporous scaffold made from the seaweed-derived polymer alginate was synthesized and mineralized for cell-based bone tissue engineering applications. Nucleation of a bone-like hydroxyapatite mineral was achieved by incubating the scaffold in modified simulated body fluids (mSBF) for 4 weeks. Analysis using scanning electron microscopy and energy dispersive x-ray analysis indicated growth of a continuous layer of mineral primarily composed of calcium and phosphorous. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue. In addition to the mineral characterization, the ability to control nucleation on the surface, into the bulk of the material, or on the inner pore surfaces of scaffolds was demonstrated. Finally, human MSCs attached and proliferated on the mineralized scaffolds and cell attachment improved when seeding cells on mineral coated alginate scaffolds. This novel alginate- HAP composite material could be used in bone tissue engineering as a scaffold material to deliver cells, and perhaps also biologically active molecules. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 95A: 222-234, 2010.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条
  • [41] The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering
    Zhou, Hongzhi
    Xu, Hockin H. K.
    BIOMATERIALS, 2011, 32 (30) : 7503 - 7513
  • [42] Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering
    Li, Yiyuan
    Meng, Yufeng
    Wang, Yuning
    Wang, Yun
    Wang, Zuolin
    COATINGS, 2023, 13 (09)
  • [43] Cell Scaffolds for Bone Tissue Engineering
    Iijima, Kazutoshi
    Otsuka, Hidenori
    BIOENGINEERING-BASEL, 2020, 7 (04): : 1 - 11
  • [44] Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Petretta, Mauro
    Gambardella, Alessandro
    Desando, Giovanna
    Cavallo, Carola
    Bartolotti, Isabella
    Shelyakova, Tatiana
    Goranov, Vitaly
    Brucale, Marco
    Dediu, Valentin Alek
    Fini, Milena
    Grigolo, Brunella
    POLYMERS, 2021, 13 (21)
  • [45] Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering
    Nassif, Laeticia
    El Sabban, Marwan
    MATERIALS, 2011, 4 (10) : 1793 - 1804
  • [46] Fabrication and evaluation of nanofibrous polyhydroxybutyrate valerate scaffolds containing hydroxyapatite particles for bone tissue engineering
    Khoshraftar, Alireza
    Noorani, Behnam
    Yazdian, Fatemeh
    Rashedi, Hamid
    Ghaemi, Roza Vaez
    Alihemmati, Zakie
    Shahmoradi, Saleheh
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2018, 67 (17) : 987 - 995
  • [47] 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration
    Soleymani, Sina
    Naghib, Seyed Morteza
    HELIYON, 2023, 9 (09)
  • [48] Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering
    Sathain, Ammara
    Monvisade, Pathavuth
    Siriphannon, Punnama
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [49] Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering
    Guan, Junjie
    Yang, Jun
    Dai, Junqi
    Qin, Yunhao
    Wang, Yang
    Guo, Yaping
    Ke, Qinfei
    Zhang, Changqing
    RSC ADVANCES, 2015, 5 (46): : 36175 - 36184
  • [50] Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering
    Salifu, Ali A.
    Lekakou, Constantina
    Labeed, Fatima H.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (07) : 1911 - 1926