Steering Heat Engines: A Truly Quantum Maxwell Demon

被引:32
作者
Beyer, Konstantin [1 ]
Luoma, Kimmo [1 ]
Strunz, Walter T. [1 ]
机构
[1] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
关键词
FLUCTUATION RELATIONS; COLLOQUIUM; CHAOS;
D O I
10.1103/PhysRevLett.123.250606
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the question of verifying the quantumness of thermal machines. A Szilard engine is truly quantum if its work output cannot be described by a local hidden state model, i.e., an objective local statistical ensemble. Quantumness in this scenario is revealed by a steering-type inequality which bounds the classically extractable work. A quantum Maxwell demon can violate that inequality by exploiting quantum correlations between the work medium and the thermal environment. While for a classical Szilard engine an objective description of the medium always exists, any such description can be ruled out by a steering task in a truly quantum case.
引用
收藏
页数:6
相关论文
共 56 条
[51]   Thermodynamics of non-Markovian reservoirs and heat engines [J].
Thomas, George ;
Siddharth, Nana ;
Banerjee, Subhashish ;
Ghosh, Sibasish .
PHYSICAL REVIEW E, 2018, 97 (06)
[52]   Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures [J].
Uzdin, Raam ;
Levy, Amikam ;
Kosloff, Ronnie .
PHYSICAL REVIEW X, 2015, 5 (03)
[53]   Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox [J].
Wiseman, H. M. ;
Jones, S. J. ;
Doherty, A. C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[54]   Are Dynamical Quantum Jumps Detector Dependent? [J].
Wiseman, Howard M. ;
Gambetta, Jay M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (22)
[55]   Quantum Otto heat engine with a non-Markovian reservoir [J].
Zhang, X. Y. ;
Huang, X. L. ;
Yi, X. X. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (45)
[56]   Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski-Moriya interaction [J].
Zhao, Li-Mei ;
Zhang, Guo-Feng .
QUANTUM INFORMATION PROCESSING, 2017, 16 (09)